STATE BOARD OF TECHNICAL EDUCATION, JHARKHAND

TEACHING AND EXAMINATION SCHEME FOR POST S.S.C. DIPLOMA COURSES

COURSE NAME: ELECTRICAL ENGINEERING GROUP

COURSE CODE: EE/EP

DURATION OF COURSE: 6 SEMESTERS WITH EFFECT FROM 2011-12

SEMESTER: FOURTH DURATION: 16 WEEKS

PATTERN: FULL TIME

SR.		Abbrev	SUB		ACHI CHEM		EXAMINATION SCHEME									
NO.	NO. SUBJECT TITLE		CODE	ТН	TU	PR PAPER	DD PAPER		(01)	PR	(04)	OR	(08)	TW	(09)	SW
				ІН	10	PK	HRS	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	(16004)
1	Transmission & Distribution of Electric Power	TDE	12102	03	01		03	100	40							
2	D. C. Machines & Transformers	DCM	12103	03		02	03	100	40	50#	20			25@	10	
3	Instrumentation	INS	12104	03		02	03	100	40					25@	10	
4	Electrical Estimation & Costing	EEC	12105	02	01	02	03	100	40			25@	10			50
5	Applied Electronics	AEL	12106	03		02	03	100	40	50#	20			25@	10]
6	Electrical Drawing	EDA	12107			04								50@	20	
7	Development of Life Skills-II	DLS	12041	01		02						25#	10	25@	10	
8	Professional Practices-IV	PPR	12108			04								50@	20	
			TOTAL	15	02	18		500		100		50		200		50

Student Contact Hours Per Week: 35 Hrs.

THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH.

Total Marks: 900

@ Internal Assessment, # External Assessment, No Theory Examination.

Abbreviations: TH-Theory, TU- Tutorial, PR-P -Oral, TW- Termwork, SW- Sessional Work

- > Conduct two class tests each of 25 marks for each theory subject. Sum of the total test marks of all subjects is to be converted out of 50 marks as sessional work (SW).
- > Progressive evaluation is to be done by subject teacher as per the prevailing curriculum implementation and assessment norms.
- Code number for TH, PR, OR and TW are to be given as suffix 1, 4, 8, 9 respectively to the subject code.

Course Name : Electrical Engineering Group

Course Code : EE / EP
Semester : Fourth

Subject Title : Transmission & Distribution of Electric Power.

Subject Code : 12102

Teaching and Examination Scheme:

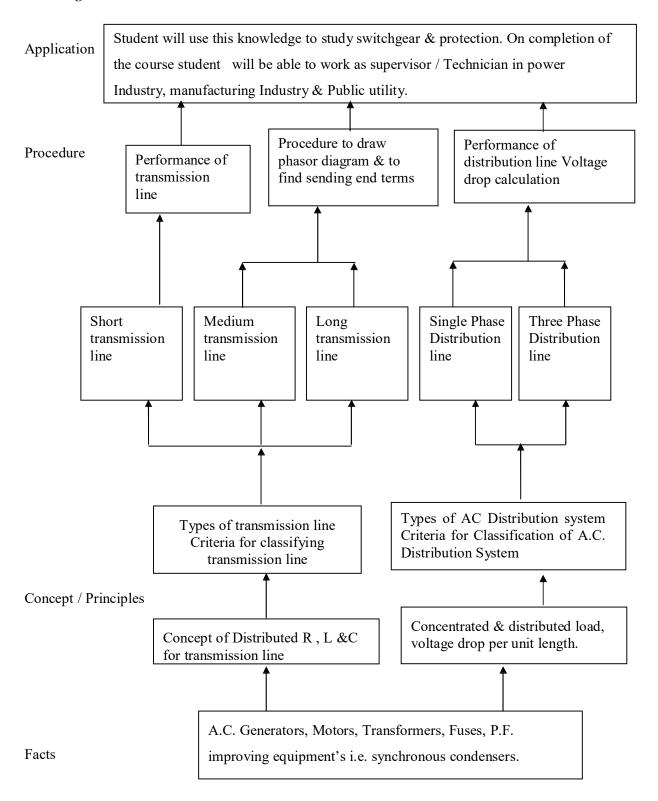
Teaching Scheme					Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03	01		03	100				100

NOTE:

Two tests each of 25 marks to be conducted as per the schedule given by SBTE.

Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

Rationale:


Electrical diploma pass outs should know systems for electrical energy transmission & distribution. They also will be able to identify various components & their functions. They will be able to measure system performance. They will use this knowledge in studying switchgear & protection. On completing the study of generation, transmission & distribution, he/she will be able to work as technician/supervisor in power industry, manufacturing industry & public utilities.

Objective:

The student will be able to:

- 1. Know various types of transmission & distribution systems.
- 2. Identify various components & Know their functions.
- 3. Draw substation layout as per the requirements.
- 4. Calculate voltage regulation & efficiency of transmission system.
- 5. Calculate voltage drop of distribution system.

Learning Structure:

Contents: Theory

Chapter	Contents	Hours	Marks
_	Basics of Transmission		
1	1.1 Introduction to transmission.	03	0.4
1	1.2 Necessity of transmission of electricity.	02	04
	1.3 Classification & comparison of different transmission systems.		
	Transmission Line Components		
	2.1 Introduction to line components.		
	2.2 types of conductors-Copper, Aluminum & state their trade		
	names.		
	2.3 Solid, Stranded & bundled conductors.		
	2.4 Line supports – requirements, types, and field of applications.		
	2.5 Line insulators – requirements, types, and field of		
	applications.		
2	2.6 Failure of insulator & reasons of Failure.	10	18
	2.7 Distribution of potential over a string of suspension insulators.		
	2.8 Concept of string efficiency, Methods of improving string		
	efficiency.		
	2.9 Corona – corona formation, advantages & disadvantages,		
	factors affecting corona, important terms related to corona.		
	2.10 Spacing between Conductors.		
	2.11 Calculation of Span length & sag Calculation		
	(Numerical based on 2.7, 2.8 & 2.11)		
	Transmission Line Parameters		
	3.1 R,L & C of 1-ph & 3-ph transmission line & their effects on		
3	line.	03	06
	3.2 Skin effect, proximity effect & Ferranti effect.		
	3.3 Concept of transposition of conductors & necessity.		
	Performance of Transmission Line		
	4.1 Classification of transmission lines.		
	4.2 Losses, Efficiency & Regulation of line.		
	4.3 Performance of single phase short transmission ine		
4	(Numerical based on it)	10	20
-	4.4 Effect of load power factor on performance.		
	4.5 Medium transmission lines-End condenser, Nominal		
	T & Nominal π Network with vector diagram.		
	4.6 General circuit & Generalized Circuit Constants		
	(A, B, C, D)		
	Extra High Voltage Transmission 5.1 Introduction & Requirement.		
5	5.2 EHVAC Transmission,	03	08
3		US	Uð
	5.3 Reasons for adoption & limitations.		
	5.4 HVDC Transmission – Advantages, Limitations.		
	Components of Distribution System 6.1 Introduction.		
	6.2 Classification of distribution system.		
	6.3 A.C distribution.		
6	6.4 Connection schemes of distribution system.	10	20
	6.5 Requirements of Distribution systems.		
	6.6 Design consideration.		
	6.7 A.C. distribution calculations.		
	0.7 11.0. distribution culculations.		

	Total	48	100				
	8.7 Connection diagram and layout of sub-stations.						
	8.6.2 Bus bar's material, types in detail.						
	Relays, CB's, fuses, Isolators, batteries, lightning arresters, Insulators.						
	8.6.1 In coming & outgoing lines, Transformers, CT&PT,						
-	8.6 Equipment's circuit element of substations.						
8	8.5 Main connection schemes.	05	12				
	8.4 Selection & location of site.						
	8.3 Advantages & Disadvantages.						
	8.2 Classification of indoor & outdoor sub-stations.						
	8.1 Introduction.						
	Substations						
	7.8 Causes of failure of cables						
	7.6 Comparison with overhead lines 7.7 Cable laying						
	7.5 Cable insulation, Metallic sheathing & mechanical protection.						
7	7.4 Cable construction.	05	12				
_	7.3 Cable conductors.	0.5	10				
	7.2 Classification of cables.						
	7.1 Introduction & requirements.						
	Underground Cables						
	(Numerical based on 1-ph & 3-ph balanced distribution system)						
	distribution system.						
	6.8 Methods of solving A.C1 phase & 3 – phase (balanced)						

Learning Resources:

Books:

Sr. No.	Name of Book	Author	Publication
1	A Course in electrical power	Soni-Gupta-Bhatnagar.	Dhanpat Rai
2	Principals of power system	V. K. Mehta	S. Chand & Company
3	A Course in electrical power	S. L. Uppal.	S. K. Khanna
4	Transmission & distribution of electrical energy	J. B. Gupta	S. K. Khanna
5	Generation & transmission of electrical energy	A. T. Star	Pitman

Course Name : Electrical Engineering Group

Course Code : EE/EP
Semester : Fourth

Subject Title : D.C. Machines & Transformers

Subject Code : 12103

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100	50#		25@	175

NOTE:

Two tests each of 25 marks to be conducted as per the schedule given by SBTE. Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

Rationale:

This subject is classified under core technology group which intends to teach facts, concepts, principles & procedure for operation & testing of electrical machines, such as DC generators, DC motors and single & three phase transformers. Student will be able to analyze the characteristics of DC motors, Transformers & Qualitative Parameters of these machines.

These machines are used in transmission, distribution & utilization systems. Knowledge gained by the students will be helpful in the study of technological subjects such as utilization of electrical energy, switch gear & protection, manufacturing processes & testing & maintenance of electrical machines.

The knowledge & the skills obtained will be helpful in discharging duties such as supervisor, controller & R & D technician.

Objectives:

Student will be able to

- 1. Know the constructional details & working principles of dc machines & transformers.
- 2. Test motors & transformers.
- 3. Evaluate the performance of dc motors & transformers by conducting various tests.
- 4. Decide the suitability of dc generator motor & transformer for particular purpose.
- 5. Write the specifications of dc machines & transformers as per requirement.
- 6. Operate any machine properly.

Learning Structure: Applications in generation, Transmission, Distribution, Utilization & Protection of Power system For learning higher semester subjects such Application as AC machines, switchgear & drives Testing of transformer Performance & testing of Principle of Electromagnetism Procedures DC motors & supply system Construction & Construction & operation operation of of DC motor transformers Construction & operation of DC generator Types of Transformer Principle Types DC Motor & Generator Working principle of Transformer Concepts Working principle of Generator & motor construction of DC Motor Statically & mutually induced emf Dynamically induced emf Various parameters of electrical network .Laws of Facts electromagnetic induction, Lenz law, Concept of L, C, R & power factor.

Contents: Theory

Chapter	Contents	Hours	Marks
	DC MACHINES General		
	1.1 definition		
	1.2 construction & types of DC machines		
	1.3 armature winding types : lap & wave.		
01	1.4 emf equation	08	12
	1.5 armature reaction		
	1.6 commutation – concept of reactance voltage		
	1.7 methods of improving commutation – emf commutation		
	Numericals on e.m.f. equation		
	DC Motors		
	2.1 working, principle, back emf, torque equation		
	2.2 characteristics & application of series, shunt & compound		
02	motors	08	16
	2.3 speed control of dc motor & numerical based on 2.1 to 2.3		
	2.4 starting of dc motor – 3 point starter		
	2.5 applications of above motors		
	Single phase transformer:		
	3.1 12		
	3.1.1 Introduction		
	3.1.2 Principle of operation		
	3.1.3 Emf equation, transformation ratio, kva rating		
	3.1.4 Types & construction of transformer		
	3.1.5 Concept of ideal transformer		
	3.1.6 Transformer on no load – vector diagram & numerical3.1.7 Transformer on load – phasor diagram of loaded		
	3.1.7 Transformer on load – phasor diagram of loaded transformer		
	Numericals on 3.1.3, 3.1.6 & 3.1.7		
	3.2 16		
03	3.2.1 Equivalent circuit	20	48
U.S	3.2.2 Direct method of finding performance of transformer,	20	10
	3.2.3 Finding the performance of 1 phase transformer by indirect		
	method using oc& sc test.		
	3.2.4 All day efficiency– numerical based on 3.2.3 & 3.2.4		
	3.3 12		
	3.3.1 Polarity of transformer & polarity test		
	3.3.2 Applications		
	3.3.3 Single phase auto transformer – principle, advantages &		
	disadvantages		
	3.3.4 Comparison with 2 winding transformer & potential divider		
	3.4 Design of Transformer: Main Dimensions, No. of turns for		
	Primary and secondary, Conductor cross section 08		
	Three phase Transformer		
	4.1 construction	1	
	4.2 connections	1	
04	4.3 voltage & current ratio	08	16
	4.4 vector groups		
	4.5 3 phase auto transformer	1	
	4.6 application of 3 phase auto transformer		

Chapter	Contents	Hours	Marks
05	Special purpose transformer 5.1 current transformer 5.2 potential transformer 5.3 isolation transformer 5.4 welding transformer	04	08
	Total	48	100

Practical:

Skills to be developed:

Intellectual Skills:

- 1. Analytical Skills.
- 2. Identification skills.

Motor Skills:

- 1. Measurement Skills.
- 2. Connection Skills.

List of Practicals:

- 1) a) To identify the constructional parts of D. C. machine.
 - b) To plot the O.C.C. of a given d. c. machine and to find critical resistance.
- 2) To find the performance of d. c. series & shunt motor by conducting load test
- 3) a) To control the speed of d. c. shunt motor above and below normal speed.
 - b) To reverse the direction of rotation of d. c. motor.
- 4) a) To identify the constructional details of 1-phase and 3-phase transformer.
 - b) Visit to maintenance and repair workshop of a transformer and prepare a report.
- 5) To measure the performance of single phase transformer by direct loading and to find transformation ratio.
- 6) To measure the performance of single phase transformer by conducting O.C. and S.C. test.
- 7) To identify terminal polarity of corresponding phases of 3-phase transformer & to calculate transformation ratio.
- 8) To compare 1-phase auto transformer with two winding transformer by collecting literature from local dealer/manufacturer & compare the data on following points.
 - Weight of iron, weight of copper, turns ratio, efficiency & percentage regulation.
- 9) To observe the phase difference between primary & secondary voltage of 3-phase transformer for various vector groups.

Learning Resources:

Books:

Sr.No	Title	Author	Publisher & Address
1	Electrical Technology	E. Hughes	Logmans, London
2	Electrical Technology	H. Cotton	C. B. S. Publisher New Delhi
3.	Electrical Technology Vol. II	B. L. Theraja	S. Chand & C0 Delhi
4.	Electrical Machine Design	A. K. Sohawney	Dhanpatrai & Sons, New Delhi

Course name : Electrical Engineering Group

Course Code : EE/EP
Semester : Fourth

Subject Title : Instrumentation

Subject Code : 12104

Teaching and Examination Scheme:

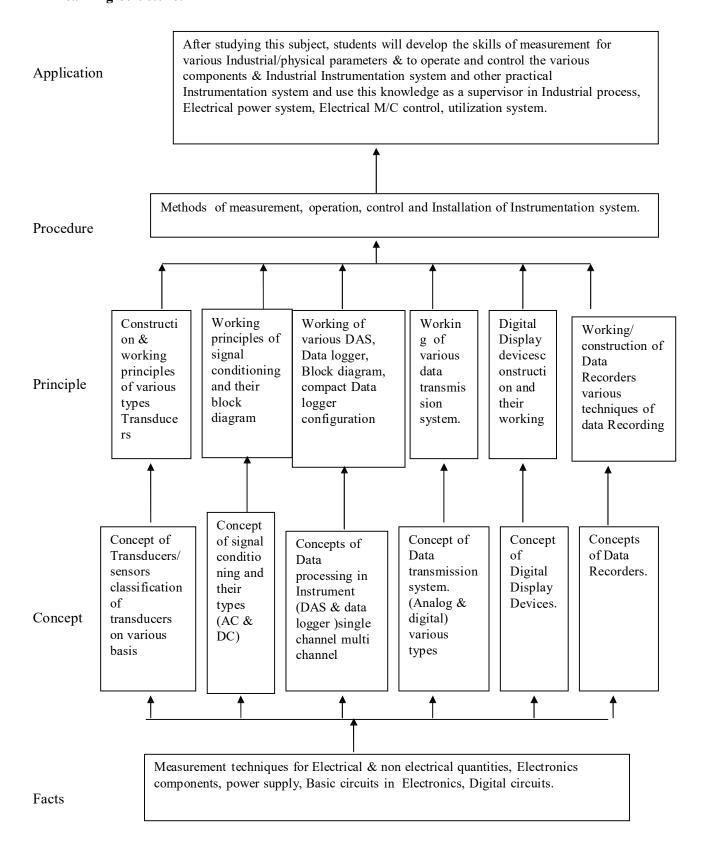
Teac	hing Sch	ieme			Examination	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100			25@	125

NOTE:

Two tests each of 25 marks to be conducted as per the schedule given by SBTE. Curriculum for first test and second test shall be approximately 40% and 60% respectively. Question paper for test: Q1: 3 bits of 3 marks each, option 34, Q.2: 3 bits of 4 marks each, option 2/3, Q3: 3 bits of 4 marks each or 2 bits of 8 marks each, option 2/3 or ½.

Total of test marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

Rationale:


This is classified under Technology Group in electrical power system, Electrical machine control, Industrial process control and many other systems such as Biomedical, environmental, defense etc. Nowadays sophisticated Instruments and their related systems are developed for fast, accurate and reliable measurements, operations and control. Being Electrical Diploma Holders has a role of supervisor, Maintenance engineer and to assist in carrying out testing and R & D work in electrical, Industrial, Electronics and communication field. He must understand the basics, facts, concepts and principles of Instrumentation, various modern Instruments.

Objectives:

The Students will be able to:

- 1. Identify the components of Instrumentation system for processing given Input to get desired Output.
- 2. Identify appropriate transducers/sensors for given application.
- 3. Identify signal conditioning circuit for Instrumentation system in Industrial process, Electrical power system, Electrical machine operation, Measurement and control.
- 4. Select data processors for given Instrumentation system.
- 5. Select appropriate data transmission system.
- 6. Identify the digital display devices and recorders for various applications.
- 7. Select the appropriate transducers/sensor for various applications of Measurement of nonelectrical quantity in Industrial process, Electrical Power system, Electrical machines, utilization system.

Learning Structure:

Contents: Theory

Chapter	Topics	Hours	Mark
	Introduction to Instrumentation system		
	Facts and concept of Instrumentation		
	Basic block diagram of Instrumentation system & its		
	function		
	Static and dynamic characteristics		
01	Accuracy and precision	03	06
	Sensitivity and Resolution		
	Linearity and nonlinearity		
	Repeatability and reproductivity		
	Hysteresis and Drift		
	Speed of Response, lag, fidelity, dynamic error		
	Transducers		
	2.1 Concept of Transducers		
	2.2 Classification of Transducers		
	2.2.1 Primary and Secondary Transducers		
	2.2.2 Electrical and Mechanical Transducers		
	2.2.3 Analog and Digital Transducers		
	2.2.4 Active and passive Transducers		
	2.3 Construction and working principles of Transducers		
	2.3.1 Resistive, Inductive and capacitive transducers		
	2.3.2 Strain gauge (No derivation only formula)		
	2.3.3 Types of strain gauges:- unbounded, bounded,		
	Semiconductor		
	2.3.4 Bourden tube, Bellows, Diaphragm.	12	10
02	2.3.5 LVDT and RVDT.	12	18
	2.3.6 Piezoelectric transducer, photoconductive cell,		
	photovoltaic cells, load cell.		
	2.3.7 RTD, Thermistor, Thermocouple.		
	2.3.8 Pyrometers (Radiation, optical, photoelectric), ultrasonic		
	temperature Transducers.		
	2.3.9 Contacting and non contacting Transducers, Digital		
	tachometer		
	2.3.10 Accelerometer,		
	2.3.11 Electromagnetic and turbine flow meter, ultrasonic flow		
	meter		
	2.3.12 Digital encoders disc type, frequency output type		
	transducer, and Reluctance pulse pick-ups.		
	Signal conditioning		
	3.1 Concept of signal conditioning		
	3.2 Block diagram of AC and DC signal conditioning and		
	working		
	3.3 Operational Amplifiers, OP AMP - 741, signal		
03	conditioning circuits using OPAMP, its working and	05	16
03	function	03	10
	3.3.1 Integrator, Differentiator, adder, subtractor, Inverter etc.		
	3.3.2 V to I converter, I to V converter, V to F converter		
	3.3.3 Instrumentation Amplifier, Differential amplifier		
	3.4 Filters:- Types and frequency response (Only passive,		
	active first order analog filters) (No derivations)		

	3.5	Multiplexing		
	3.6	Use of signal conditioning circuit for Instrumentation		
	3.0	system for Industrial applications.		
	Doto	Processors & Data transmission		
	4.1	Necessity of data processing in Instrumentation.		
	4.2	Generalized Data acquisition system: Block diagram. &		
	7.2	explanation		
	4.3	Objectives of DAS		
	4.4	Signal conditioning in DAS, Ratiometric conversion,		
	'''	Logarithmic conversion		
	4.5	Single channel and multi channel Data acquisition system		
		only block diagram		
	4.6	A/D and D/A converters using OPAMPS only working		
0.4		principle	00	1.0
04	4.7	Data loggers, its characteristics, Basic operation of data	08	16
		logger		
	4.8	Block diagram of data logger and explanation		
	4.9	Comparison between DAS and data logger.		
	4.10	Concept of Data transmission		
	4.11	Block diagram of data transmission system & explanation		
	4.12	Advantages and disadvantages of digital data transmission		
		over analog transmission		
	4.13	Time Division multiplexing (TDM), Frequency division		
	4 1 4	multiplexing.		
	4.14	Digital Modulation, pulse code format, Modem.		
	5.1	lay Devices and Recorders Digital display devices (LED, seven segment only)		
	5.2	Concept of 3 ½, 4 ½ digit		
	5.3	Necessity of Recorder in Instrumentation		
	5.4	Classification of Recorders.		
	5.5	Block diagram and working principles of strip-chart, X-Y		
		recorder, Magnetic tape recorder & their applications.		
05	5.6	Frequency Modulation Recording (FM), Modified	08	18
		Frequency Modulation (MFM)		
	5.7	Digital Data Recording, Techniques of Digital data		
		Recording (RZ & NRZ techniques)		
	5.8	Advantages and disadvantages of digital data recording		
	5.9	Comparison between analog and digital Recording		
		techniques		
	5.10	Recorders selection for particular applications.		
	_	ration of Instrumentation system		
	6.1	Points to be considered while selecting a transducer for its		
	6.2	intended applications.		
	0.2	Diagram, explanation and working of Instrumentation system for:-		
	6.2.1	Temperature Measurement by RTD, Thermistor,		
06	0.2.1	Thermocouple	08	22
	6.2.2	Pressure Measurement by Mechanical devices,		
	0.2.2	Photoelectric, piezoelectric, Bourden tube, LVDT		
	6.2.3	Speed measurement by contacting and non contacting		
	0.2.3	methods		
	6.2.4	Displacement measurement by LVDT, RVDT.		

14

	Total	48	100
07	7.1 – Pilot Devices: - What are pilot devices? - Function of pilot devices. - List of different pilot devices. 7.2 – Construction, working and applications of: Push Button, Limit Switches, Float Switches, Electromagnetic Relay, Pressure Switches, Thermostat.	04	04
	 6.2.5 Flow measurement by electromagnetic & turbine flow meter. 6.2.6 Liquid level measurement by Resistive, Inductive, capacitive and ultrasonic methods, digital methods 6.2.7 Humidity Measurement. Pilot Devices 		

PRACTICAL:

Skills to be developed:

Intellectual skills:

- 1. Selection of equipment.
- 2. selection of transducers.

Motor Skills:

- 1. Accuracy of measurement.
- 2. Proper connection.
- 3. Draw Graphics.

List of Practical:

Sr.No	Name of Experiment
01	To measure linear displacement by LVDT and plot characteristics.
02	To measure strain/force using strain gauge/load cell.
03	To measure temperature by pt-100,thermistor and thermocouple along with simple resistance bridge.
04	To measure pressure by using Bourdon tube.
05	To study the following signal conditioning circuits using OP-Amp 741 and observe and plot the output-Adder, Subtracter ,Differentiator and Integrator.
06	To study V to I converter and I to V converter using OP-Amp 741 and observe the output.
07	To measure speed by contacting non-contacting and digital tachometer.
08	To measure PH value by digital PH meter of 1)Water 2)Chemical solution.
09	Demonstration of D/A converter using OP-Amp.
10	To plot frequency response of active filters. Low pass filter and high pass filter.
11	To demonstrate pilot devises like push button switches limit switches selectors switches pressure switches, float switches etc.

15

Learning Resources:

Books:

Sr. No.	Author	Book	Publication	
1.	H.S.Kalsi	Electronic Instrumentation	Tata McGraw Hill	
2.	D.Patranabis	Principles of Industrial Instrumentation	Tata McGraw Hill	
3.	A.K.Sawhney	Electrical and Electronics Measurement and Instrumentation	Dhanpat Rai & co.	
4.	Alan s. morris	Principles of Measurement & Instrumentation	Prentice Hall India	
5.	Donald P. Eckman	Industrial Instrumentation	Wiley Eastern Ltd.	
6.	S.K. Bhattachrya Brijinder Singh	Control of Electrical Machines	New Age International	

Course name : Electrical Engineering Group

Course Code : EE/EP
Semester : Fourth

Subject Title : **Electrical Estimation & Costing**

Subject Code : 12105

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
02	01	02	03	100		25@		125

NOTE:

Two tests each of 25 marks to be conducted as per the schedule given by SBTE. Curriculum for first test and second test shall be approximately 40% and 60% respectively. Question paper for test: Q1: 3 bits of 3 marks each, option $\frac{3}{4}$, Q.2: 3 bits of 4 marks each, option 2/3, Q3: 3 bits of 4 marks each or 2 bits of 8 marks each, option 2/3 or $\frac{1}{2}$.

Total of test marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

Rationale:

This subject is classified under Technology subject. Electrical Diploma holders have to work as Technicians & Supervisors for Electrical Installations of various companies, commercial and Industrial electrification schemes and prepare estimates for these schemes. They also work as Independent electrical contractors and execute illumination and electrification schemes.

Knowledge of electrical engineering drawing, IE rules, NEC, different types of electrical Installation their design considerations equips the students with the capability to design and prepare working drawing of different Installation projects.

Similarly understanding of the methods and procedure of estimating the material required; developed the skill of preparing schedule of material; detailed estimates; costing of different types of Installation which leads to preparing of the tender documents, procedure for tendering, evaluation and billing of executed work of different types of electrical Installation Project.

Objectives:

Student will be able to:

- 1) Define different types of Electrical Installation
- 2) Interpret the Electrical Engineering Drawing
- 3) State IE rules, NEC related to Electrical Installation and testing.
- 4) State and describe the basic terms, general rules, circuit design procedure, wiring design and design considerations of Residential Electrical Installations.
- 5) Explain the sequence to be followed in carrying out the estimate of Residential Installations.
- 6) Prepare detail estimate and costing of Residential Electrical Installations.
- 7) Test Industrial Electrical Installation.
- 8) Understand the concept of contracts, contractors, tender and tender document and its related procedures.

Learning Structure:

Application:

Estimating & costing of Residential, Commercial & Industrial Electrical Installation and prepare tendering documents, Testing of Electrical Installation and Evaluation & billing of executed work **Procedure:** To prepare the Costing of Material, Preparation of Testing of Electrical schedule of Labour, Overhead, Tendering Document Installation as per IS Material contingencies & procedures ٨ Sequence to be Recent price list Method of Concepts Tender Procedure of followed to of electrical calculation of of contract Tendering execution of prepare Estimate Material & Labour cost, documents work Overhead etc. Accessories contractors Selection of Selection & Selection & Position of Deciding the Calculation Selection of Rating of of length of Rating and rating of main Rating of equipment in path of protective wiring cable conductor Size of Accessories Installation switch, devices & ear required for and conduit conduit & conductor & Distribution thing of Installation & ear thing earth wire Conduct board, Bus Installation bar etc. **Concepts:** Design consideration of Electrical Installation (Residential, Commercial, Industrial Installation) Circuit design procedure wiring design for each type of Installation Principles of circuit design for each type of Installation Various plans & IE rules applicable to General rules & Data tables of diagrams related to Guidelines for Residential, Residential, conductor, electrical Installation Commercial & Commercial & Industrial Material and Installation **Industrial Installation** Accessories Required

Contents: Theory

Chapter	Topics	Hours	Marks
	Drawing and IE rules		
	1.1 Classification of Electrical Installation.		
	1.2 General requirement of Electrical Installation.		
Λ1	1.3 Reading and Interpretation of Electrical Engineering	02	00
01	Drawings.	02	08
	1.3.1. Various diagrams, plans and layout		
	1.3.2. Important definitions related to Installation		
	1.4 IE rules related to Electrical Installation & Testing.		
	Service Connection		
	2.1 Concept of service connection.		
02	2.2 Types of service connection & their features.	02	08
02	2.3 Methods of Installation of service connection.	02	00
	2.4 Estimates of under ground & overhead service		
	connections.		
	Residential Building Electrification		
	3.1 General rules guidelines for wiring of Residential		
	Installation and positioning of equipments.		
	3.2 Principles of circuit design in lighting and power circuits.		
	3.3 Procedures for designing the circuits and deciding the		
	number of circuits.		
	3.4 Method of drawing single line diagram.		
03	3.5 Selection of type of wiring and rating of wires & cables.	08	24
00	3.6 Load calculations and selection of size of conductor.		
	3.7 Selection of rating of main switch, distributions board,		
	protective switchgear ELCB and MCB and wiring		
	accessories.		
	3.8 Earthing of Residential Installation.		
	3.9 Sequence to be followed for preparing Estimate		
	3.10 Preparation of detailed estimates and costing of Residential		
	Installation.		
	Electrification of commercial Installation		
	4.1 Concept of commercial Installation.		
	4.2 Differentiate between electrification of Residential and		
	commercial Installation. 4.3 Fundamental considerations for planning of an electrical		
	4.3 Fundamental considerations for planning of an electrical Installation system for commercial building.		
	4.4 Design considerations of electrical Installation system for		
	commercial building.		
	4.4.1 Load calculations & selection of size of service connection		
04	and nature of supply.	08	20
	4.4.2 Deciding the size of cables, busbar and busbar chambers.		
	4.4.3 Mounting arrangements and positioning of switchboards,		
	distribution boards main switch etc.		
	4.4.4 Earthing of the electrical Installation		
	4.5 Selection of type wire, wiring system & layout.		
	4.6 Sequence to be followed to prepare estimate.		
	4.7 Preparation of detailed estimate and costing of commercial		
	Installation.		

Chapter	Topics	Hours	Marks
05	 Electrification of factory unit Installation 5.1 Concept of Industrial load. 5.2 Concept of Motor wiring circuit and single line diagram. 5.3 Important guidelines about power wiring and Motor wiring. 5.4 Design consideration of Electrical Installation in small Industry/Factory/workshop. 5.4.1. Motor current calculations. 5.4.2. Selection and rating of wire, cable size & conduct. 5.4.3 Deciding fuse rating, starter, distribution boards main switch etc. 5.4.4. Deciding the cable route, determination of length of wire, cable, conduit, earth wire, and earthing. 5.5 Sequence to be followed to prepare estimate. 5.6 Preparations of detailed estimate and costing of small factory unit/ workshop. 	08	24
06	Testing of Installation Testing of wiring Installation for verification of current; earthing, insulation resistance and continuity as per IS	02	04
07	Contracts, Tenders and Execution 7.1 Concept of contracts and Tenders 7.1.1Contracts, types of contracts, contractors. 7.1.2 Valid Contracts, Contract documents. 7.1.3 Tender and tender notices. 7.1.4 Procedure for submission and opening tenders. 7.1.5 Comparative statements, criteria for selecting contractors, General conditions in order form. 7.2 Principles of Execution of works 7.3.1 Administrative approval, Technical sanctions. 7.3.2. Billing of executed work.	02	12
	Total	32	100

Tutorials:

Problems on estimation and costing:

- 1. Electrical Installation scheme for single flat, independent bungalow and small house. Draw wiring diagram and prepare detailed estimate and its costing
- 2. Electrical Installation scheme for commercial buildings. Draw wiring diagram and prepare detailed estimate and its costing.
- 3. Electrical Installation scheme for small factory unit. Draw single line layout and prepare detailed estimate and its costing
 - 1) Small factory unit 2) Workshop 3) Agriculture pump and floor mills etc.

Assignments:

Note: Use half imperial drawing sheets

1) Design electrical Installation scheme for a flat scheme/ Independent bungalow/House. Draw detail wiring diagrams also prepare material schedule and detailed estimate and costing. Prepare report and Drawing sheets. (Minimum 2 Drawing sheets).

- 2) Design electrical Installation scheme for any one commercial complex having minimum 20KW load requirements. Draw detailed wiring diagram; prepare material schedule and detailed estimate and costing, prepare report and Drawing sheet (one Drawing sheet).
- 3) Design Electrical Installation scheme for agriculture pump/floor mill. Draw wiring diagram, prepare material schedule and detailed estimate and costing. Prepare report and Drawing sheet. (One Drawing sheet).
- 4) Design electrical Installation scheme for any two-factory/small unit/workshop having aggregate load of 30 KW. Draw wiring diagrams prepare material schedule & detail estimate and costing. Prepare report and Drawing sheet. (Two Drawing sheet).

Learning Resources:

1. Books:

Sr. No.	Author	Title	Publisher & Address
1.	K.B. Raina S.K.Bhattacharya	Electrical Design; Estimating and costing	New Age International (p) Limited, New Delhi
2.	Surjit Singh	Electrical Estimating and costing	Dhanpat Rai and company, New Delhi
3.	N. Alagappan S. Ekambaram	Electrical Estimating and costing	Tata Mc Graw Hill Publication, New Delhi
4.	S.L. Uappal	Electrical wiring Estimating and costing	Khanna Publication.
5.	B.D.Arora	Electrical wiring, Estimating and costing	R.B. Publication, New Delhi

2. IS/International Codes: IS-5909, 7733, 2174, 732,4648

Course Name: Electrical and Electronics Engineering Group

Course Code: EE/EP/ET/EJ/EN/EX/IE/IS/IC/DE

Semester: Fourth

Subject Title: Applied Electronics

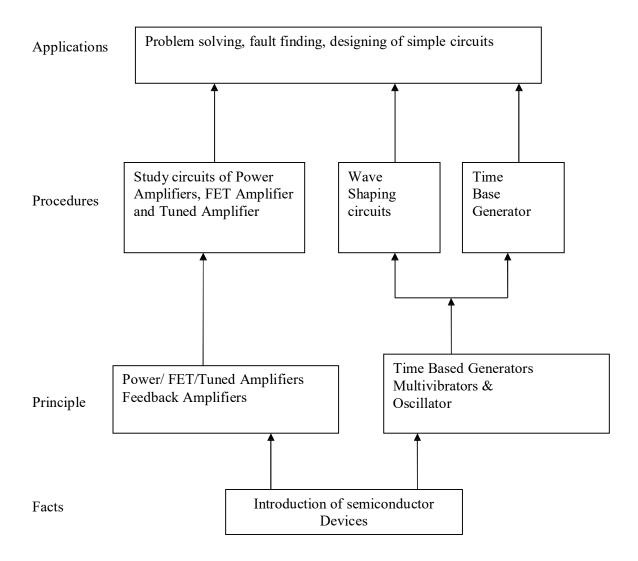
Subject Code: 12106

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		
TH	TU	PR	PAPER HRS.	TH	PR	OR	TW	TOTAL
03		02	03	100	50#		25@	175

NOTE:

Two tests each of 25 marks to be conducted as per the schedule given by SBTE. Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)


Rationale:

As a core technology subject, it intends to teach operating principle and application of electronic circuits and devices like amplifiers, oscillators, switching circuits, wave shaping circuits. The subject knowledge is required in Industrial electronics, Instrumentation and Communication system. Understanding of the subject will provide skill to the students for trouble shooting & testing of some of circuits & devices.

Objectives:

- 1] Classify various amplifiers & oscillator circuits based on their characteristics.
- 2] Classify different wave shaping circuits & multivibrators.
- 3] Configure regulated power supply using IC's.
- 4] Test and repair various devices.

Learning Structure:

Contents: Theory

Chapter	Name of the Topic	Hours	Marks
	AMPLIFIERS	10000	
01	 1.1) Power Amplifiers 1.1.1 Introduction, Classification – Class A, Class B, Class AB & Class C, efficiency of each. 1.1.2 Single stage class A power amplifier: Circuit operation, input & output waveforms, graphical Analysis and efficiency of 1.1.2.i] Transformer couple resistive load single stage power amplifier 1.1.2.ii] Class A push pull amplifier 1.1.2.iii] Class B push pull amplifier 1.1.2.iv] Class AB push pull amplifier 1.1.3 Concept of cross over distortion 1.1.4. Advantages of push pull amplifier, collector power dissipation requirement & specifications of power transistor, need of heat sink. 1.2 FET Amplifier 1.2.1 Biasing of FET: Source Self Bias, Drain to source Bias Application of FET as V V R 1.2.2 Common Source Amplifier: Working & Applications 1.2.3 Introduction to MOSFET:Types, Construction, Working & Applications 1.3 Tuned Amplifiers 1.3.1 Introduction & necessity of tuned amplifier. Basic tuned circuits, series & parallel resonance in tuned circuits. 	16	26
02	 1.3.2 Operating principle, circuit working, resonance frequency of single tuned, double tuned amplifiers. 2.1 Feedback Amplifiers & oscillators 2.1.1 General theory of feedback: Types of feedback – negative & positive feedback. 2.1.2 Types of negative feedback – voltage shunt, voltage series, current shunt & current series. 2.1.3 Advantages of negative feedback on voltage gain, bandwidth, input impedance, output impedance, stability, noise, distortion in amplifiers. 2.2 Introduction to oscillator, block diagram of sine wave oscillator, requirement of oscillation. 2.2.1 Barkhausen criterion, operating principles of RC & LC oscillators 2.2.2 RC oscillators – RC phase shift, Wien bridge 2.2.3 LC oscillators – Colpitts, Hartley, Crystal oscillators Circuit diagram, equation for frequency of oscillation & frequency stability. 	10	22
03	3.1 Wave shaping circuits 3.1.1 Necessity of wave shaping circuits. 3.1.2 Linear circuits – RC integrator & differentiator – input / output waveforms & frequency response. 3.1.3 Non-linear circuits - Clipper, diode series & shunt, positive	06	16

	& negative biased & unbiased & combinational clipper.		
	3.1.4 Clampers – positive & negative clampers		
04	 4.1 Multivibrators 4.2 Transistor as switch. Definition & graphical representation of different time periods. 4.3 Multivibrator classification, circuit working & frequency with specific application. MMV, AMV, BMV & Schmitt trigger 	06	16
05	 5.1 Time base generator – 5.2 Voltage time base generator, exponential sweep generator UJT Relaxation Oscillator, negative resistance generator. working principle & operation . 5.3 Current time base generator , bootstrap & miller sweep generator, applications in TV & CRO 	06	14
06	Trouble shooting & Testing 6.1 Need for trouble shooting, Important steps for testing 6.2 Visible testing – Observing circuits for visible faults like broken component, open contacts etc. 6.3 Active testing – Voltage analysis, Resistance analysis, signal analysis. 6.4 Trouble shootings of multivibrators, phase shift oscillators, transistorised sweep generator, clipping & clamping circuits.	04	06
	Total	48	100

Practical:

Intellectual Skills:

- 1. To locate faults in circuits.
- 2. Interpret the waveforms.

Motor Skill:

- 1. Ability to Sketch circuit/block diagram.
- 2. Ability to interpret the circuit.

List of Practicals:

- 1. To Plot Frequency response of FET amplifier.
- 2. To Plot Frequency response & bandwidth of negative feedback amplifier.
- 3. To Study the Colpitt's oscillator.
- 4. To Study RC Phase shift oscillator.
- 5. To Study RC integrator and differentiator & draw i/p & o/p waveforms.
- 6. To Study Clipping and clamping circuits.
- 7. To Study function of Astable Multivibrator.
- 8. To Study Monostable Multivibrator.
- 9. To Study Bistable Multivibrator.

10. To Study UJT relaxation oscillator.

Learning Resources: Books:

Sr. No	Author	Title	Publication
01	Paul Malvino	Electronic Principles	Tata McGraw-Hill
02	R.S.Sedha	Applied Electronics	S.Chand & Co.
03	Allen Mottershed	Electronics Devices & Circuits	Prantice Hall India LTD.
04	J.Millman and H.Taub	Pulse Digital & Switching Waveforms	Tata McGraw-Hill
05	G.K.Mittal and A.R.Vanvasai	Pulse & Digital Electronics	Khanna Publication

Course Name : Electrical Engineering Group

Course Code : EE/EP
Semester : Fourth

Subject Title: Electrical Drawing

Subject Code : 12107

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
		04					50@	50

Rationale:

This is a core subject and has importance in operation and Maintenance of Electrical Systems. Electrical Drawing indicates the symbolic representation and position of components. It also shows the power flow thorough them for a given systems.

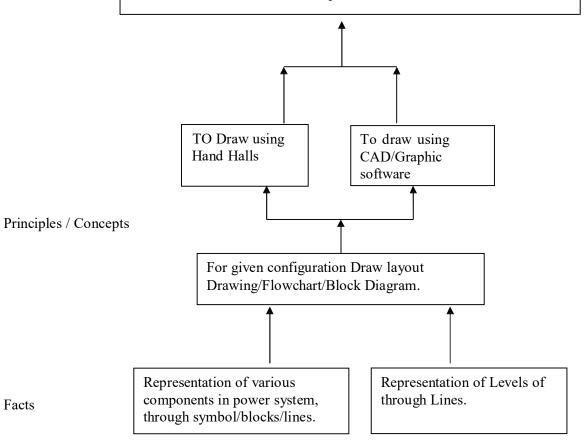
Electrical Drawing symbolically represents the circuit configuration and enables to identify the sequential flow of current, power and measure voltage at various stages of the system.

Ability to read and understand the drawing will facilitate the visualization of the complete installation which makes it easy to troubleshooting, maintenance of the system.

Objectives:

The students will be able to,

- 1. Read electrical drawing for any system to understand the working of the system and its components.
- 2. Find the important points in the circuit diagrams or layout for troubleshooting and maintenance.
- 3. Use these drawings effectively to measure various quantities (continuity also) in the actual circuits or systems and based on the readings (output) at these points can diagnose the fault.
- 4. Use graphic software to draw the circuit or block diagrams or flowchart for various types of electrical systems.


Learning Structure:

Application

Diploma holder will prepare drawings using CAD. Will read drawings. This is useful in studying Installation, Estimating & Costing, Testing & Maintenance, technology subjects, of higher semester. On completion of the Diploma he/she will use this knowledge on the field for installation & testing and maintenance of various systems

Procedure

This knowledge will be useful test and diagnose the fault and repair the circuit/system (using the Drawing preventive maintenance will be done) on computing this subject he will be able to work as supervisor / maintenance foreman and with experience can became Contractor.

Contents: Theory

Chapter	Topics				
01	Study of symbols for representation of machines, Electrical Accessories Equipment switching and protection units as per IS 2032, 8270, 3722	2*			
02	Study of various methods of representing circuits/systems through layouts, Block Diagrams, wiring diagrams.	1*			
03	Study any Engineering Graphic package (preferably CAD)for preparing layout, Block Diagrams, wiring Diagrams of substations, Machine shop, Illumination systems etc.	1*			
04	How to read and interpret, various types of electrical drawings based on the knowledge & Information given while studying the above 3 chapters.	4*			

^{*} Eight Clock Hours of practical / drawing will be used for teaching theory

Drawing Sheets: (HALF IMPERIAL)

- 1. (A) Draw a sheet for symbolic representation of various electrical equipment's/machines
 - (B) Read the given circuits identify the components & trace the path of flow of current.
- 2. Draw a sheet of wires & wiring accessories
- 3. Prepare a drawing sheet showing details of domestic appliances such as Electric iron, electric Geyser, Electric Bell, Hot plate.
- 4. Draw a sheet of electrical symbols for various electrical devices using CAD.
- 5. Draw circuit diagrams for Staircase & Godown wiring using CAD.
- 6. Draw (a) circuit diagram (b) Vector diagram for conducting direct loading test on transformer using CAD.
- 7. Draw control and power circuit diagrams for DOL and Star/Delta Starter.

Mini Project:

1. Visit electrical Machine lab/workshop & trace the electrical installation. Draw Layout diagram & single line diagram.

Learning Resources:

1. Books:

Sr. No.	Author Title		Publisher	
01	Dr. S. K. Bhattacharya	Electrical Engineering Drawing	New Age International Publishers	
02	Mr. Ajit Singh	Working with Auto CAD	Tata McGraw Hill	

2. IS/International Codes: IS 2032, 8270, 3722

Course Name: Diploma in Engineering and Technology

Course Code: (All Branches)

Semester: Fourth

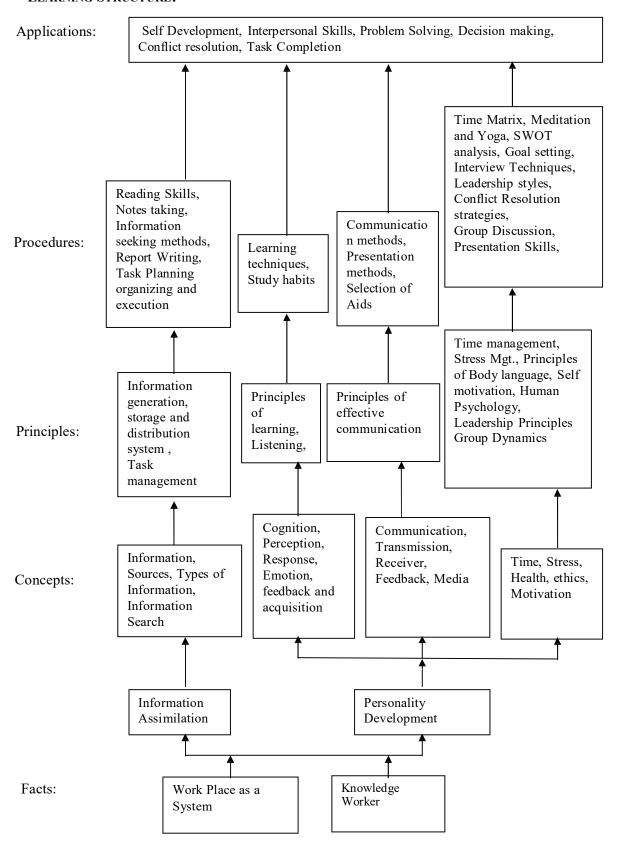
Subject Title: Development of Life Skills - II

Subject Code: 12041

Teaching and Examination Scheme:

Teaching Scheme				Examinati	on Scheme			
TH	TU	PR	PAPERH RS.	TH	PR	OR	TW	TOTAL
01		02				25#	25@	50

Rationale:


In today's competitive world, the nature of organizations is changing at very rapid speed. In this situation the responsibility of diploma holder is not unique. He will be a part of a team in the organization. As such the individual skills are not sufficient to work at his best.

This subject will develop the student as an effective member of the team. It will develop the abilities and skills to perform at highest degree of quality as an individual as well as a member of core group or team. Such skills will enhance his capabilities in the field of searching, assimilating information, managing the given task, handling people effectively, solving challenging problems. THE SUBJECT IS CLASSIFIED UNDER HUMAN SCIENCE.

OBJECTIVES: THE STUDENTS WILL BE ABLE TO:

- 1. Develop attitude for working in teams.
- 2. Apply problem solving techniques for a given situation.
- 3. Use effective presentation techniques.
- 4. Apply techniques of effective time management.
- 5. Apply task management techniques for given projects.
- 6. Enhance leadership traits.
- 7. Resolve conflict by appropriate method.
- 8. Survive self in today's competitive world.
- 9. Face interview without fear.
- 10. Follow moral and ethics.
- 11. Convince people to avoid frustration.

LEARNING STRUCTURE:

Contents: Theory

Topic No	CONTENTS	Hours					
1	SOCIAL SKILLS SOCIETY, SOCIAL STRUCTURE, DEVELOP SYMPATHY AND EMPATHY.						
2	SWOT Analysis – Concept, How to make use of SWOT Analysis	01					
3	Inter personal Relation Sources of conflict, Resolution of conflict, Ways to enhance interpersonal relations.						
4	Problem Solving I)STEPS IN PROBLEM SOLVING, 1)IDENTIFY AND CLARIFY THE PROBLEM, 2)INFORMATION GATHERING RELATED TO PROBLEM, 3)EVALUATE THE EVIDENCE, 4)CONSIDER ALTERNATIVE SOLUTIONS AND THEIR IMPLICATIONS, 5)CHOOSE AND IMPLEMENT THE BEST ALTERNATIVE, 6)REVIEW II)Problem solving technique.(any one technique may be considered) 1) Trial and error, 2) Brain storming, 3) Lateral thinking	02					
5	Presentation Skills Body language Dress like the audience Posture, Gestures, Eye contact and facial expression. PRESENTATION SKILL — STAGE FRIGHT, Voice and language — Volume, Pitch, Inflection, Speed, Pause Pronunciation, Articulation, Language, Practice of speech. Use of aids —OHP,LCD projector, white board						
6	Group discussion and Interview technique – Introduction to group discussion, Ways to carry out group discussion, Parameters— Contact, body language, analytical and logical thinking, decision making INTERVIEW TECHNIQUE NECESSITY, TIPS FOR HANDLING COMMON QUESTIONS.						
7	Working in Teams UNDERSTAND AND WORK WITHIN THE DYNAMICS OF A GROUPS. TIPS TO WORK EFFECTIVELY IN TEAMS, ESTABLISH GOOD RAPPORT, INTEREST WITH OTHERS AND WORK EFFECTIVELY WITH THEM TO MEET COMMON OBJECTIVES, TIPS TO PROVIDE AND ACCEPT FEEDBACK IN A CONSTRUCTIVE AND CONSIDERATE WAY, LEADERSHIP IN TEAMS, HANDLING FRUSTRATIONS IN GROUP.	02					

8	Task Management INTRODUCTION, TASK IDENTIFICATION, TASK PLANNING, ORGANIZING AND EXECUTION, CLOSING THE TASK	02
	TOTAL	16

CONTENTS: PRACTICAL

List of Assignments: (any eight assignments)

- 1) SWOT analysis:- Analyse yourself with respect to your strength and weaknesses, opportunities and threats. Following points will be useful for doing SWOT.
 - a) Your past experiences,
 - b) Achievements,
 - c) Failures,
 - d) Feedback from others etc.
- 2) Undergo a test on reading skill/memory skill administered by your teacher.
- 3) Solve the puzzles.
- 4) Form a group of 5-10 students and do a work for social cause e.g. tree plantation, blood donation, environment protection, camps on awareness like importance of cleanliness in slump area, social activities like giving cloths to poor etc.(One activity per group)
- 5) Deliver a seminar for 10-12 minutes using presentation aids on the topic given by your teacher.
- 6) Watch/listen an informative session on social activities. Make a report on topic of your interest using audio/visual aids. Make a report on the programme
- 7) Conduct an interview of a personality and write a report on it.
- 8) Discuss a topic in a group and prepare minutes of discussion. Write thorough description of the topic discussed
- 9) Arrange an exhibition, displaying flow-charts, posters, paper cutting, photographs etc on the topic given by your teacher.

Note: - Please note that these are the suggested assignments on given contents/topic. These assignments are the guide lines to the subject teachers. However the subject teachers are free to design any assignment relevant to the topic. The **term work** will consist of any eight assignments.

Mini Project: On Task Management. Decide any task to be completed in a stipulated time with the help of teacher. Write a report considering various steps in task management.

Learning Resources:

1. Books:

Sr. No	Title of the Book	Author	Publisher
1	Adams Time management	Marshall Cooks	Viva Books
2	Basic Managerial Skills for All	E.H. Mc Grath, S.J.	Pretice Hall of India, Pvt Ltd.
3	Body Language	Allen Pease	Sudha Publications Pvt. Ltd.
4	Creativity and problem solving	Lowe and Phil	Kogan Page (I) P Ltd
5	Decision making & Problem Solving	by Adair, J	Orient Longman
6	Develop Your Assertiveness	Bishop, Sue	Kogan Page India
7	Make Every Minute Count	Marion E Haynes	Kogan page India
8	Organizational Behavior	Steven L McShane and Mary Ann Glinow	Tata McGraw Hill
9	Organizational Behavior	Stephen P. Robbins	Pretice Hall of India, Pvt Ltd
10	Presentation Skills	Michael Hatton (Canada – India Project)	ISTE New Delhi
11	Stress Management Through Yoga and Meditation		Sterling Publisher Pvt Ltd
12	Target setting and Goal Achievement	Richard Hale ,Peter Whilom	Kogan page India
13	Time management	Chakravarty, Ajanta	Rupa and Company
14	Working in Teams	Harding ham .A	Orient Longman

2. Internet Assistance:

- 1. http://www.mindtools.com
- 2. http://www.stress.org
- 3. http://www.ethics.com
- 4. http://www.coopcomm.org/workbook.htm
- 5. http://www.mapfornonprofits.org/
- 6. http://www.learningmeditition.com http://bbc.co.uk/learning/courses/
- 7. http://eqi.org/
- 8. http://www.abacon.com/commstudies/interpersonal/indisclosure.html
- 9. http://www.mapnp.org/library/ethics/ethxgde.htm
- 10. http://www.mapnp.org/library/grp_cnfl/grp_cnfl.htm
- 11. http://members.aol.com/nonverbal2/diction1.htm
- 12. http://www.thomasarmstron.com/multiple intelligences.htm
- 13. http://snow.utoronto.ca/Learn2/modules.html
- 14. http://www.quickmba.com/strategy/swot/

Course Name: Electrical Engineering Group

Course Code : EE/EP
Semester : Fourth

Subject Title: Professional Practices- IV

Subject Code: 12108

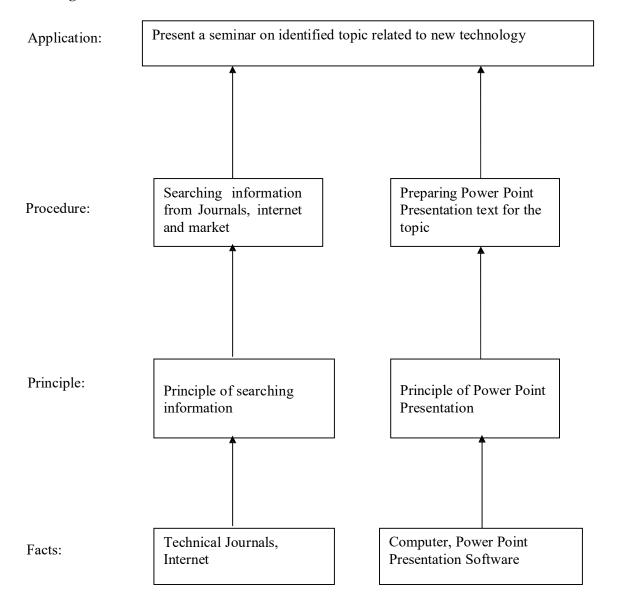
Teaching and Examination Scheme:

Teaching Scheme				Examinati	on Scheme			
ТН	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
		04					50@	50

Rationale:

Most of the diploma holders join industries. Due to globalization and competition in the industrial and service sectors the selection for the job is based on campus interviews or competitive tests.

While selecting candidates a normal practice adopted is to see general confidence, ability to communicate and attitude, in addition to basic technological concepts.


The purpose of introducing professional practices is to provide opportunity to students to undergo activities which will enable them to develop confidence. Industrial visits, expert lectures, seminars on technical topics and group discussion are planned in a semester so that there will be increased participation of students in learning process.

Objectives:

Student will be able to:

- 1. Acquire information from different sources.
- 2. Prepare notes for given topic.
- 3. Present given topic in a seminar.
- 4. Interact with peers to share thoughts.
- 5. Prepare a report on industrial visit, expert lecture.

Learning Structure:

Activity	Contents	Hours
01	Industrial Visits Structured industrial visits be arranged and report of the same should be submitted by the individual student, as part of the term work. The industrial visits may be arranged in the following areas / industries: i) Visit to HT Sub Station ii) Visit to Transformer Manufacturing Industry iii) Visit to Electronics Industry iv) Visit to Design Office of MSEB v) Visit to Industry to observe:- a)Function of DAS and Data logger b) Electrical quantities, non-electrical quantities by recorder. vi) Adarsh Gram	20
02	Lectures by Professional / Industrial Expert / Student Seminars based on information search, expert lectures to be organized from any of the following areas: i) Interview Techniques. ii) Effect of Transmission and Distribution Losses on cost of Energy Generation iii) Recent Trends in Transformer Manufacturing iv) Electrical Safety in Industry v) Applications of D. C. Motors: Present and Future Trends vi) Any other suitable topic	12
03	Information Search: Information search can be done through manufacturers, catalogue, internet, magazines; books etc. and submit a report. Following topics are suggested: i) Recent Trends in Insulation Material and Insulators ii) Electrical Wiring Accessories iii) Non Conventional Energy Sources with focus on solar energy iv) Elevators installation and maintenance v) Any other suitable areas	10
04	Seminar: Seminar topic should be related to the subjects of fourth semester. Each student shall submit a report of at least 10 pages and deliver a seminar (Presentation time – 10 minutes)	12
0.5	Mini Projects: A group of 6to8 students be formed for group discussion; 1. Prepare a report on Electrification of multi storied building	10
05	2. Market Survey of Power Converters on the basis of Rating, Cost, Efficiency, Battery quality	

37