## STATE BOARD OF TECHNICAL EDUCATION, JHARKHAND

TEACHING AND EXAMINATION SCHEME FOR POST S.S.C. DIPLOMA COURSES

COURSE NAME: DIPLOMA IN ELECTRICAL ENGINEERING

**COURSE CODE: EE** 

DURATION OF COURSE: 6 SEMESTERS WITH EFFECT FROM 2011-12

SEMESTER: SIXTH DURATION: 16 WEEKS

**PATTERN: FULL TIME - SEMESTER** 

| SR. | CHD IECT TITLE                                     | Abbrev | SUB   |     | ACHI<br>CHEM | _  | EXAMINATION SCHEME |     |      |     |         |     |         |     |         |         |
|-----|----------------------------------------------------|--------|-------|-----|--------------|----|--------------------|-----|------|-----|---------|-----|---------|-----|---------|---------|
| NO. | SUBJECT TITLE                                      | iation | CODE  | тн  | TU           | PR | PAPER              | TH  | (01) | PR  | PR (04) |     | OR (08) |     | TW (09) |         |
|     |                                                    |        |       | 111 | 10           | IK | HRS                | Max | Min  | Max | Min     | Max | Min     | Max | Min     | (16006) |
| 1   | Management Ø                                       | MAN    | 12219 | 03  |              |    | 03                 | 100 | 40   |     |         |     |         |     |         |         |
| 2   | Testing & Maintenance of Electrical Machines \$    | TME    | 12231 | 03  |              | 02 | 03                 | 100 | 40   | 50# | 20      |     |         | 25@ | 10      |         |
| 3   | Power Electronics and Drives \$                    | PED    | 12232 | 03  |              | 02 | 03                 | 100 | 40   |     |         | 25@ | 10      |     |         |         |
| 4   | Heating, Ventilation and Air<br>Conditioning       | HVA    | 12235 | 03  |              | 02 | 03                 | 100 | 40   |     |         | 25@ | 10      |     |         |         |
| 5   | Industrial Project                                 | IPR    | 12237 |     |              | 04 |                    |     |      |     |         | 50# | 20      | 50@ | 20      |         |
| 6   | Professional Practices- VI                         | PPR    | 12238 |     |              | 05 |                    |     |      |     |         |     |         | 50@ | 20      | 50      |
| 7   | Elective-III (Any One)                             |        |       |     |              |    |                    |     |      |     |         |     |         |     |         |         |
|     | Electric Traction – II \$                          | ETA    | 12233 | 03  |              | 02 | 03                 | 100 | 40   |     |         | 25# | 10      | 25@ | 10      |         |
|     | Maintenance and Repairs of Electrical Equipment \$ | MRE    | 12234 | 03  |              | 02 | 03                 | 100 | 40   |     |         | 25# | 10      | 25@ | 10      |         |
|     | Microprocessor and Microcontroller \$              | MAM    | 12236 | 03  |              | 02 | 03                 | 100 | 40   |     |         | 25# | 10      | 25@ | 10      |         |
|     |                                                    | ,      | TOTAL | 15  |              | 17 |                    | 500 |      | 50  |         | 125 |         | 150 |         | 50      |

Student Contact Hours Per Week: 32 Hrs.

THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH.

Total Marks: 875

@ Internal Assessment, # External Assessment, Do Theory Examination, Ø – Common to all Conventional Diploma,\$ - Common to EE/EP

Abbreviations: TH-Theory, TU-Tutorial, PR-Practical, OR-Oral, TW-Termwork, SW-Sessional Work

- > Conduct two class tests each of 25 marks for each theory subject. Sum of the total test marks of all subjects is to be converted out of 50 marks as sessional work (SW).
- > Progressive evaluation is to be done by subject teacher as per the prevailing curriculum implementation and assessment norms.
- Code number for TH, PR, OR and TW are to be given as suffix 1, 4, 8, 9 respectively to the subject code.

Course Name: All Branches of Diploma in Engineering / Technology

Course Code: EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ME/PG/PT/AE/CE/CS/CR/CO/CM/IF/

EE/EP/CH/CT/PS/CD/EDEI/CV/FE/IU/MH/MI

Semester : Sixth for EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ME/PG/PT/AE/CE/CS/CR/CO

/CM/IF/EE/EP/CH/CT/PS/CD/EDEI/CV/FE/IU and Seventh for MH / MI

**Subject Title: Management** 

Subject Code: 12219

#### **Teaching and Examination Scheme:**

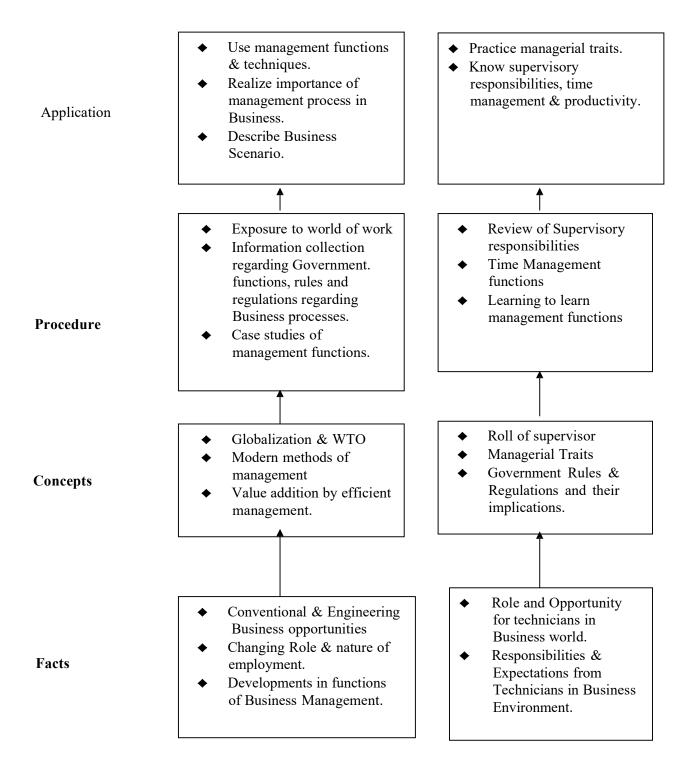
| Teaching Scheme |    |    |              |     | Examination | on Scheme |    |       |
|-----------------|----|----|--------------|-----|-------------|-----------|----|-------|
| TH              | TU | PR | PAPER<br>HRS | TH  | PR          | OR        | TW | TOTAL |
| 03              |    |    | 03           | 100 |             |           |    | 100   |

#### **NOTE:**

> Two tests each of 25 marks to be conducted as per the schedule given by SBTE.

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

#### **Rationale:**


After completion of three years of technical training, Polytechnic students are expected to enter in to the World of Work. The business environment is altogether different and new to the students. A proper introduction and understanding of Business Processes is therefore essential for all Polytechnic students. Management is a subject which deals with basics of Managerial science required to understand the processes in Industrial & Commercial environment. This will enable the students of Polytechnics to become familiar and to understand various Business Organizational structures, their functioning and the Role these technicians will have to play in these setups with responsibilities.

## **Objective:**

The students will able to:

- 1. Familiarize environment in the world of work
- 2. Explain the importance of management process in Business.
- 3. Identify various components of management.
- 4. Describe Role & Responsibilities of a Technician in an Organizational Structure.
- 5. Apply various rules and regulations concerned with Business & Social responsibilities of the Technician.

## **Learning Structure:**



# **Contents: Theory**

| Chapter | Name of the Topics                                             | Hours | Marks |
|---------|----------------------------------------------------------------|-------|-------|
|         | Overview of Business                                           |       |       |
|         | 1.1. Types of Business                                         |       |       |
|         | Service                                                        |       |       |
|         | Manufacturing                                                  |       |       |
|         | • Trade                                                        |       |       |
|         | 1.2. Industrial sectors                                        |       |       |
|         | Introduction to                                                |       |       |
|         | Engineering Industry                                           |       |       |
| 01      | Process Industry                                               | 02    | 04    |
| 01      | Textile Industry                                               | 02    | 04    |
|         | Chemical Industry                                              |       |       |
|         | Agro Industry                                                  |       |       |
|         | 1.3 Globalization                                              |       |       |
|         | Introduction                                                   |       |       |
|         | <ul> <li>Advantages &amp; disadvantages w.r.t India</li> </ul> |       |       |
|         | 1.4 Intellectual Property Rights I(IPR)                        |       |       |
|         | • Concept                                                      |       |       |
|         | Types of IPR                                                   |       |       |
|         | Management Process                                             |       |       |
|         | 2.1 What is Management?                                        |       |       |
|         | • Evolution                                                    |       |       |
|         | Various Definitions                                            |       |       |
|         | • concept of Management                                        |       |       |
|         | Levels of Management                                           |       |       |
|         | Administration and Management                                  |       |       |
| 02      | Scientific Management by F W Taylor                            | 07    | 14    |
| 02      | 2.2 Principles of Management (14 principles of Henry Fayol)    |       |       |
|         | 2.3 Functions of Management:                                   |       |       |
|         | • Planning                                                     |       |       |
|         | Organizing                                                     |       |       |
|         | Coordinating                                                   |       |       |
|         | Directing                                                      |       |       |
|         | Controlling                                                    |       |       |
|         | Decision Making                                                |       |       |
|         | Organizational Management                                      |       |       |
|         | 3.1 Organization                                               |       |       |
|         | Definition                                                     |       |       |
|         | • Steps in forming organization                                |       |       |
|         | 3.2 Types of Organization                                      |       |       |
| 03      | • Line                                                         | 07    | 14    |
|         | • Line & Staff                                                 |       |       |
|         | • Functional                                                   |       |       |
|         | • Project type                                                 |       |       |
|         | 3.3 Departmentation                                            |       |       |
|         | Centralized & Decentralized                                    |       |       |

|    |                                                                   | T  |     |
|----|-------------------------------------------------------------------|----|-----|
|    | <ul> <li>Authority &amp; Responsibility</li> </ul>                |    |     |
|    | • Span of Control (Management)                                    |    |     |
|    | 3.4 Forms of ownerships                                           |    |     |
|    | <ul> <li>Proprietorship</li> </ul>                                |    |     |
|    | <ul> <li>Partnership</li> </ul>                                   |    |     |
|    | Joint stock company                                               |    |     |
|    | Co-operative society                                              |    |     |
|    | Govt. Sector                                                      |    |     |
|    | Human Resource Management                                         |    |     |
|    | 4.1 Personnel Management                                          |    |     |
|    | Introduction                                                      |    |     |
|    | Definition                                                        |    |     |
|    | • Function                                                        |    |     |
|    | 4.2 Staffing                                                      |    |     |
|    | Introduction to HR                                                |    |     |
|    | Introduction to HR Planning                                       |    |     |
|    | Recruitment procedure                                             |    |     |
|    | 4.3 Personnel – Training & Development                            |    |     |
|    | • Types of training                                               |    |     |
|    | - Induction                                                       |    |     |
|    | - Skill enhancement                                               |    | • • |
| 04 | 4.4 Leadership & Motivation                                       | 08 | 20  |
|    | Leadership- Styles & types                                        |    |     |
|    | Motivation – Definition , Intrinsic & Extrinsic                   |    |     |
|    | Moslow's theory of Motivation and its significance                |    |     |
|    | 4.5 Safety Management                                             |    |     |
|    | Causes of Accidents                                               |    |     |
|    | Safety Procedures                                                 |    |     |
|    | 4.6 Introduction, Objectives & feature of Industrial Legislation  |    |     |
|    | such as                                                           |    |     |
|    | Factory Act                                                       |    |     |
|    | •ESI Act,                                                         |    |     |
|    | • Workman Compensation Act,                                       |    |     |
|    | • Industrial Dispute Act.                                         |    |     |
|    | Financial Management (No Numericals)                              |    |     |
|    | 5.1. Financial Management-Objectives & Functions                  |    |     |
|    | 5.2. Capital Generation & Management                              |    |     |
|    | • Types of capitals                                               |    |     |
|    | • Sources of finance                                              |    |     |
|    | 5.3. Budgets and Accounts                                         |    |     |
|    | Types of Budgets                                                  |    |     |
|    | <ul> <li>Production Budget (including Varience Report)</li> </ul> |    |     |
| 05 | Labour Budget                                                     | 08 | 18  |
|    | Introduction to Profit & Loss Account (Only concept)              |    |     |
|    | Balance sheet etc.                                                |    |     |
|    | 5.4. Introduction to Various Taxes                                |    |     |
|    | • Excise Service Tax,                                             |    |     |
|    | • Income Tax                                                      |    |     |
|    | • VAT                                                             |    |     |
|    | • Custom Duty.                                                    |    |     |
|    | - Cusioni Duty.                                                   |    |     |

|    | Materials Management                                                    |    |     |
|----|-------------------------------------------------------------------------|----|-----|
|    | 6.1. Inventory Management (No Numericals)                               |    |     |
|    | <ul> <li>Meaning &amp; Objectives</li> </ul>                            |    |     |
|    | 6.2 ABC Analysis                                                        |    |     |
|    | 6.3 Economic Order Quantity:                                            |    |     |
|    | <ul> <li>Introduction &amp; Graphical Representation</li> </ul>         |    |     |
| 06 | 6.4 Purchase Procedure                                                  | 08 | 10  |
| 00 | <ul> <li>Objectives of Purchasing</li> </ul>                            | 08 | 18  |
|    | <ul> <li>Functions of Purchasing Department</li> </ul>                  |    |     |
|    | Steps inPurchasing                                                      |    |     |
|    | 6.5 Modern Techniques of Material Management                            |    |     |
|    | <ul> <li>Introductory treatment to Just inTime( JIT)/ System</li> </ul> |    |     |
|    | Applications & Products (SAP) /Enterprise Resource                      |    |     |
|    | Planning (ERP)                                                          |    |     |
|    | Project Management (Simple /Elementary Numericals)                      |    |     |
|    | 7.1 Project Management                                                  |    |     |
|    | <ul> <li>Introduction &amp; Meaning</li> </ul>                          |    |     |
|    | <ul> <li>Introduction to CPM/PERT Techniques ( simple</li> </ul>        |    |     |
| 07 | network problems )                                                      | 08 | 12  |
| 07 | <ul> <li>Concept of Break Even Analysis and its significance</li> </ul> | 08 | 12  |
|    | 7.2 Quality Management                                                  |    |     |
|    | <ul> <li>Definition of Quality, Concept of Quality, Quality</li> </ul>  |    |     |
|    | Circle, Quality Assurance                                               |    |     |
|    | <ul> <li>Introduction to TQM, Kaizen, 5 'S' &amp; Six Sigma</li> </ul>  |    |     |
|    | Total                                                                   | 48 | 100 |

# **Learning Resources:**

# **Books:**

| Sr.<br>No | Author                                      | Tit;e                                | Publisher                                               |  |  |
|-----------|---------------------------------------------|--------------------------------------|---------------------------------------------------------|--|--|
| 01        | Dr. O.P. Khanna                             | Industrial Engg & Management         | Dhanpal Rai & sons New Delhi                            |  |  |
| 02        | Dr. S.C. Saksena                            | Business Administration & Management | Sahitya Bhavan Agra                                     |  |  |
| 03        | W.H. Newman E.Kirby Warren Andrew R. McGill | The process of Management            | Prentice- Hall of India Pvt.<br>Ltd. New Delhi - 110001 |  |  |

# **Video Cassets:**

| No | Subject                                     | Source                           |  |  |  |
|----|---------------------------------------------|----------------------------------|--|--|--|
| 1. | Business opportunity selection and guidance |                                  |  |  |  |
| 2. | Planning for completion and Growth          | Website: http://www.ediindia.org |  |  |  |

Course Name : Electrical Engineering Group.

Course Code : EE/EP Semester : Sixth

**Subject Title** : Testing & Maintenance of Electrical Machines

Subject Code : 12231

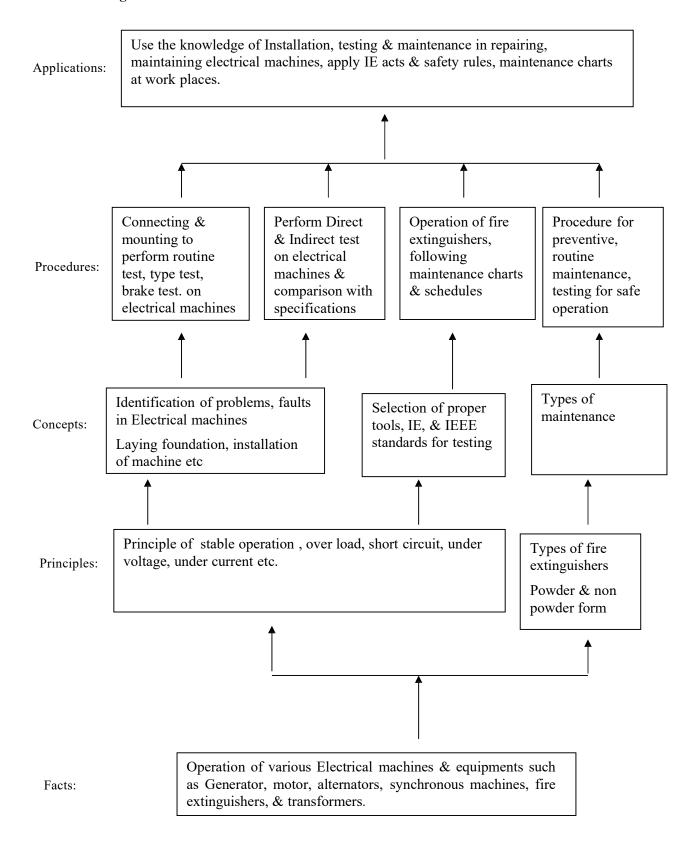
## **Teaching and Examination Scheme:**

| Teaching Scheme |    |    |              |     | Examinati | on Scheme |     |       |
|-----------------|----|----|--------------|-----|-----------|-----------|-----|-------|
| TH              | TU | PR | PAPER<br>HRS | TH  | PR        | OR        | TW  | TOTAL |
| 03              |    | 02 | 03           | 100 | 50#       |           | 25@ | 175   |

### **NOTE:**

- > Two tests each of 25 marks to be conducted as per the schedule given by SBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

### **Rationale:**


This is technology level subject with application in Industry, commercial, public utility departments such as PWD, Irrigation, MSEB, water supply & sewage board etc. After studying this subject student will be able to inspect, test, install & commission electrical machines as per IS and International standards. He/She shall carry out routine & preventive maintenance of electrical machines & possesses knowledge of Indian Electricity Act, safety rules, safety of machines & persons, prevention of accident. This will help him to initiate total productive maintenance.

### **Objective:**

Student will be able to

- 1. Know safety measures & state safety precautions.
- 2. Test single phase, three phase transformer, DC & AC machine as per IS.
- 3. Identify / Locate common troubles in electrical machines & switch gear.
- 4. Plan & carry out routine & preventive maintenance.
- 5. Install LV switchgear & maintain it.
- 6. Ascertain the condition of insulation & revarnishing if necessary.
- 7. Initiate total productive maintenance.

### **Learning structure:**



# **Contents: Theory**

| Chapter | Name of the Topic                                                                                                                       | Hours | Marks |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
|         | Safety & Prevention of Accidents:                                                                                                       |       |       |
|         | Definition of terminology used in safety; safety, hazard, accident, major accident hazard, responsibility, authority, accountability,   |       |       |
|         | monitoring,                                                                                                                             |       |       |
|         | I.E. Act & statutory regulations for safety of persons & equipments                                                                     |       |       |
|         | working with electrical installation,                                                                                                   |       |       |
| 01      | Dos & don'ts for substation operators as listed in IS                                                                                   | 04    | 08    |
|         | Meaning & causes of electrical accidents factors on which severity                                                                      |       |       |
|         | of shock depends,                                                                                                                       |       |       |
|         | Procedure for rescuing the person who has received an electric                                                                          |       |       |
|         | shock, methods of providing artificial respiration,                                                                                     |       |       |
|         | Precautions to be taken to avoid fire due to electrical reasons,                                                                        |       |       |
|         | operation of fire extinguishers.                                                                                                        |       |       |
|         | General Introduction:                                                                                                                   |       |       |
|         | Objectives of testing significance of I.S.S. concept of tolerance,                                                                      |       |       |
| 02      | routine tests, type tests, special tests.                                                                                               |       |       |
|         | Methods of testing a) Direct, b) Indirect, c) Regenerative.                                                                             |       |       |
| 02      | Concept of routine, preventive & breakdown maintenance,                                                                                 | 07    | 12    |
|         | advantages of preventive maintenance, procedure for developing                                                                          |       |       |
|         | preventive maintenance schedule,                                                                                                        |       |       |
|         | Factors affecting preventive maintenance schedule.                                                                                      |       |       |
|         | Introduction to total productive maintenance.                                                                                           |       |       |
|         | Testing & maintenance of rotating machines:                                                                                             |       |       |
|         | Type tests, routine tests & special tests of 1 & 3 phase Induction                                                                      |       |       |
|         | motors, Routine, Preventive, & breakdown maintenance of 1 & 3 phase                                                                     |       |       |
| 03      | Induction motors as per IS 9001:1992                                                                                                    | 05    | 14    |
|         | Parallel operation of alternators, Maintenance schedule of                                                                              |       |       |
|         | alternators & synchronous machines as per IS 4884-1968                                                                                  |       |       |
|         | Brake test on DC Series motor.                                                                                                          |       |       |
|         | Testing & maintenance of Transformers:                                                                                                  |       |       |
|         | Listing type test, routine test & special test as per I.S. 2026-1981                                                                    |       |       |
|         | Procedure for conducting following tests:                                                                                               |       |       |
|         | Measurement of winding resistance, no load losses, & no load                                                                            |       |       |
|         | current, Impedance voltage, load losses, Insulation resistance,                                                                         |       |       |
|         | Induced over voltage withstand test, separate source voltage                                                                            |       |       |
| 04      | withstand test, Impulse voltage withstand test, Temperature rise test                                                                   | 12    | 22    |
|         | of oil & winding, Different methods of determining temp rise- back                                                                      |       |       |
|         | to back test, short circuit test, open delta (delta – delta) test.                                                                      |       |       |
|         | Preventive maintenance & routine maintenance of distribution                                                                            |       |       |
|         | transformer as per I.S. 10028(part III): 1981, Periodic checks for                                                                      |       |       |
|         | replacement of oil, silica gel, parallel operation of 1 & 3 phase                                                                       |       |       |
|         | transformer, load sharing calculations (numerical)                                                                                      |       |       |
|         | Testing & maintenance of Insulation:                                                                                                    |       |       |
|         | Classification of insulating materials as per I.S. 8504 (part III)                                                                      |       |       |
| 05      | 1004 factors affecting life of insulating metapials, massymment of                                                                      | US    | 1 19  |
| 05      | 1994, factors affecting life of insulating materials, measurement of insulation resistance & interpretation of condition of insulating. | 08    | 18    |

# **Practical:**

Skills to be developed:

## **Intellectual skills:**

- 1. Select appropriate meters & equipment
- 2. Recollect Testing & Maintenance procedures.

## **Motor Skills:**

- 1. Accuracy of Measurement
- 2. Proper connections
- 3. Draw characteristics

#### **List of Practical:**

- 1) Draw circuit diagram select appropriate meters, connect it to perform routine test on single phase Induction motor
- 2) As per the given circuit diagram perform routine test on three phase Induction motor, & calculate the different parameters
- 3) Select two single phase transformers, perform polarity test, mark its terminals, select appropriate meters & perform back to back test, compare its regulation with direct loading method
- 4) Perform parallel operation of transformer as per I.S.
- 5) Perform parallel operation of alternator as per I.S.
- 6) Carry out OC & SC test on Induction motor, plot circle diagram, & calculate parameters
- 7) Perform brake test on DC series motor & plot characteristic of output against torque, speed, load current as per I. S. list suitable applications.

## B) Field work:

8) Observe & carry out weekly, monthly & yearly maintenance of motor in your workshop & prepare its report

## C) Mini project:

- 9) Prepare trouble-shooting chart for single and three phase transformers
- 10) Prepare trouble-shooting chart for single and three phase motors

## **Learning Resources:**

#### **Books:**

| Sr. No. | Author        | Title                                                      | Publisher                                  |  |
|---------|---------------|------------------------------------------------------------|--------------------------------------------|--|
| 01      | B. L. Theraja | Electrical Technology<br>Vol I To IV                       | S. Chand & Co., New<br>Delhi               |  |
| 02      | B. V. S. Rao  | Operation & Maintenance Of<br>Electrical Machines Vol - I  | Media Promoters &<br>Publisher Ltd. Mumbai |  |
| 03      | B. V. S. Rao  | Operation & Maintenance Of<br>Electrical Machines Vol - II | Media Promoters &<br>Publisher Ltd. Mumbai |  |
| 04      | C.J. Hubert   | Preventive Maintenance Hand<br>Books & Journals            |                                            |  |

Course Name : Electrical Engineering Group

Course Code : EE/EP Semester : Sixth

**Subject Title** : Power Electronics and Drives

Subject Code : 12232

## **Teaching and Examination Scheme:**

| Teaching Scheme |    |    |              |     | Examinati | on Scheme |    |       |
|-----------------|----|----|--------------|-----|-----------|-----------|----|-------|
| TH              | TU | PR | PAPER<br>HRS | TH  | PR        | OR        | TW | TOTAL |
| 03              |    | 02 | 03           | 100 | 1         | 25@       | 1  | 125   |

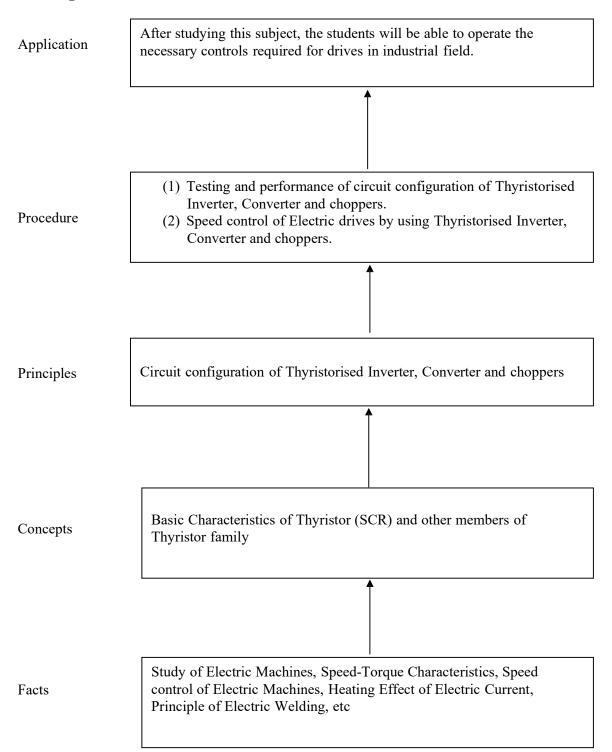
### **NOTE:**

- > Two tests each of 25 marks to be conducted as per the schedule given by SBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

#### Rationale:

The field of electrical engineering is generally segmented into three major areas – Electronics, Power and Control. Power Electronics involves a combination of these three areas. In broad terms, the function of power electronics is to process and control the electrical energy by supplying voltage and current in a form that is optimally suited to the load. Now a day's electrical machine are controlled by Power Electronics methods. Also the various conventional control & relays are replaced by electronic control & relays, employing solid state power semiconductor devices.

Hence, for electrical engineering Students it is desirable to study the course dealing with Power Electronics. This subject belongs to technology area.


# **Objectives:**

The students will be able to:

- 1. Explain the construction and operation of power semiconductor devices and plot their characteristics.
- 2. Draw the circuit diagrams and explain the working of controlled rectifiers with appropriate waveforms
- 3. Draw the circuit diagrams and explain the working of different types of Inverters with appropriate waveforms.

- 4. Explain the Voltage and Frequency Control Methods used in Inverters.
- 5. Draw the circuit diagrams and explain the working of different types of choppers with appropriate waveforms.
- 6. Apply the power electronic methods of controls in Electrical Engg. field.

## **Learning Structure:**



**Contents: Theory** 

Note: No Derivations and No Numerical for all Topics.

| Chapter | Name of the Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hours | Marks |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 01      | Power Semiconductor Devices:  1.1 Thyristor (SCR)  1.2 Construction, Operation and Symbol  1.3 V-I Characteristics  1.4 Thyristor Turn Methods: Voltage Triggering, Gate Triggering, dv/dt Triggering and Light Triggering.  1.5 Gate Control: DC Gate Signal, AC Gate Signal and Pulse.  1.6 Thyristor Turn off Process  1.7 Thyristor Specifications and Ratings Voltage Ratings, Current Ratings, Power Ratings and Temperature Ratings.  1.8 Heat Sinks and Mountings  1.9 Thyristor Family: Symbols & V-I Characteristics                                                                                                                                                                                                                                                                                                                                   | 06    | 16    |
| 02      | <ul> <li>Converters:</li> <li>2.1 - Introduction</li> <li>2.2 - Single Phase Fully Controlled Half Wave Converter     <ul> <li>With Resistive Load</li> <li>With RL Load and Freewheeling Diode.</li> </ul> </li> <li>2.3 - Single Phase Fully Controlled Full Wave Converter     <ul> <li>With Resistive Load</li> <li>With RL Load.</li> </ul> </li> <li>2.4 - Single Phase Fully Controlled Bridge Converter     <ul> <li>With Resistive Load</li> <li>With RL Load</li> </ul> </li> <li>2.5 - Three Phase Fully Controlled Bridge Converter     <ul> <li>With RL Load.</li> </ul> </li> <li>2.6 - Comparison of 3 φ and 1 φ Phase Converters.</li> <li>2.7 - Effect of Source Impedance on Converter Operation.</li> <li>2.8 - Cycloconverters and Cycloinverters.: Single phase and three phase, principle of operation, Input output waveforms.</li> </ul> | 08    | 20    |
| 03      | Inverters:  3.1 - Introduction  3.2 - Classification: 1φ & 3φ Inverters,     Line Commutated & Forced Commutated Inverters,     Series, Parallel, & Bridge Inverters.  3.3 - Series Inverter     - Operation of Basic Series Inverter Circuit     - Modified Series Inverter     - Three Phase Series Inverter  3.4 - Parallel Inverter     - Operation of Basic Parallel Inverter Circuit  3.5 - Single Phase Bridge Inverter     - Half Bridge Inverter     - Full Bridge Inverter  3.6 - Voltage and Frequency Control of 1φ Inverters:                                                                                                                                                                                                                                                                                                                       | 08    | 20    |

|    | - Static VAR Compensation System.                                           |    |     |
|----|-----------------------------------------------------------------------------|----|-----|
|    |                                                                             |    |     |
|    | - Static Excitation System for Alternators.                                 | 1  |     |
|    | - Battery Charging Control.                                                 |    |     |
|    | - Electric Welding Control.                                                 |    |     |
|    | - Di-electric Heating Control.                                              |    |     |
|    | - Induction Heating Control.                                                |    |     |
|    | - Static Circuit Breakers (DC & AC).                                        |    |     |
|    | 5.3 – Other Applications:                                                   |    |     |
|    | 5.2.3 – AC servomotor, speed control of AC servomotor.                      |    |     |
|    | 5.2.2 – Open/Closed loop control of stepper motor.                          |    |     |
|    | Cycloconverters.                                                            |    |     |
| 05 | CSI, Variable frequency Variable Voltage,                                   | 18 |     |
|    | frequency square wave VSI, Variable frequency                               |    |     |
|    | with Variable frequency PWM VSI, Variable                                   |    |     |
|    | 5.2.1 – Speed control of three phase Induction Motor                        |    |     |
|    | 5.2 – AC Drives:                                                            |    | 18  |
|    | DC servomotor.                                                              |    |     |
|    | 5.1.2 – Introduction to DC servo motor, Speed control of                    |    |     |
|    | converter, step up and step down chopper.                                   |    |     |
|    | phase and three phase half and full controlled                              |    |     |
|    | 5.1.1 – Speed control of DC series motor with single                        |    | 12  |
|    | 5.1 – DC Drives:                                                            |    | 12  |
|    | Power Electronic Applications:                                              |    |     |
|    | 4.7 – Step Up Chopper                                                       |    |     |
|    | 4.6 – Jones Chopper                                                         |    |     |
|    | Auxiliary Commutation, Load Commutation                                     |    |     |
|    | 4.5 - Commutations Methods for Choppers:                                    |    |     |
|    | Class A, Class B, Class C, Class D and Class E                              |    | 1 1 |
| 04 | 4.4 – Classification of Choppers:                                           | 08 | 14  |
|    | - Variable Frequency System                                                 |    |     |
|    | - Constant Frequency System                                                 |    |     |
|    | 4.3 – Control Techniques:                                                   |    |     |
|    | 4.2 – Chopper Principle                                                     |    |     |
|    | 4.1 – Introduction                                                          |    |     |
|    | - By Using Filter(LC, Resonant, and OTT Filter)  Choppers:                  |    |     |
|    | - By Transformer Connections  By Using Filter(I.C. Research and OTT Filter) |    |     |
|    | - By Single Pulse Width Modulation                                          |    |     |
|    | 3.7 – Waveform Control (Harmonic Reduction)                                 |    |     |
|    | - Sinusoidal Pulse Width Modulation                                         |    |     |
|    | - Multiple Pulse Width Modulation                                           |    |     |
|    | - Single Pulse Width Modulation                                             |    |     |
|    | - Pulse Width Modulation(PWM) Method:                                       |    |     |
|    | Control.                                                                    |    |     |
|    | Voltage, External Control of AC Voltage and Internal                        |    |     |
|    |                                                                             |    |     |
|    | - Methods for Output Voltage Control: External Control of DC                |    |     |

15

#### **Practical:**

Skills to be developed:

### Intellectual skills:

- 1. Select appropriate devices and instruments
- 2. Testing & troubleshooting

### Motor Skills:

- 1. Accuracy of Measurement
- 2. Proper connections
- 3. Draw characteristics

### **List of Practicals:**

- (1) To identify the terminals and plot V-I Characteristics of Thyristor.
- (2) To study Full Wave Rectifier Using SCR and UJT.
- (3) To study Parallel Inverter Using SCR.
- (4) To study Bridge Rectifier Using SCR and UJT.
- (5) To study series Inverter Using SCR.
- (6) To study Chopper Using SCR.
- (7) To study Circuit Breaker Using SCR.
- (8) To study Battery Charger Using SCR.
- (9) To Perform Speed control of DC series motor by static armature voltage control using single phase half/full controlled converter.
- (10) To Perform speed control of three phase Induction motor using PWM/CSI Inverter. Interpret the speed torque characteristics. Use the circuit as Variable Voltage Variable Frequency (V. V. V. F.) drive.

## **Learning Resources:**

#### **Books:**

| DOURS.     |                                    |                                             |                                     |  |  |  |
|------------|------------------------------------|---------------------------------------------|-------------------------------------|--|--|--|
| Sr.<br>No. | Author                             | Title                                       | Publisher                           |  |  |  |
| 1.         | B. R. Gupta ,V. Singhal            | Power Electronics                           | S. K. Kataria & Sons                |  |  |  |
| 2.         | Muhammad H. Rashid                 | Power Electronics                           | Prentice-Hall of India Pvt.<br>Ltd. |  |  |  |
| 3.         | M. D. Singh,<br>K. B. Khanchandani | Power Electronics                           | Tata McGraw-Hill                    |  |  |  |
| 4.         | G. K. Dubey                        | Fundamentals of Electric<br>Drives          | Narosa Publishing House             |  |  |  |
| 5.         | V. Subrahmanyam                    | Electric Drives – Concepts and Applications | Tata McGraw-Hill                    |  |  |  |

**Course Name: Diploma in Electrical Engineering** 

Course Code : EE

Semester : Sixth

Subject Title: Heating, Ventilation & Air Conditioning

Subject Code: 12235

## **Teaching and Examination Scheme:**

| Teaching Scheme |    |    |              |     | Examinati | on Scheme |    |       |
|-----------------|----|----|--------------|-----|-----------|-----------|----|-------|
| TH              | TU | PR | PAPER<br>HRS | TH  | PR        | OR        | TW | TOTAL |
| 03              |    | 02 | 03           | 100 |           | 25@       |    | 125   |

### NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by SBTE.

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

#### **Rationale:**

This is a technology subject which is an elective subject for third year diploma in Electrical Engineering. Presently the need of Heating Ventilation and Air conditioning (HVAC) is increasing with the growth in IT sector, commercial establishments, hospitals, hotels etc. Therefore there is a growing need of engineers / technicians in this field. Hence, technicians/supervisors from electrical engineering branch are also expected to have some basic knowledge of HVAC systems.

This subject covers installation, testing and maintenance of Heating Ventilation and Air conditioning systems. After completing this subject the student can carryout installation, testing and maintenance of HVAC equipment efficiently and effectively. He can work as service engineer or get self employed.

## **Objectives:**

The student will be able to:-

- 1. Install HVAC equipment.
- 2. Test the equipment for its performance evaluation.
- 3. Carryout routine and preventive maintenance of HVAC system.
- 4. Troubleshoot and repair HVAC equipment.
- 5. Calculate heat load and approximate capacity of the equipment using thumb rule.
- 6. Select appropriate equipment.

# **Learning Structure:**

| Applicatio | cation To install, test, troubleshoot and to maintain the HVAC system |                                             |                                         |                                              |                                       |                                            |
|------------|-----------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|----------------------------------------------|---------------------------------------|--------------------------------------------|
| Procedure  | Procedure<br>for<br>installation                                      | Step by step<br>procedure for<br>testing    | Procedure f<br>Heat load<br>calculation | <b>C</b> or                                  | To follow to for repair a maintenance |                                            |
| Principle  | Principle of operation                                                | Princip<br>installa                         |                                         |                                              |                                       | ple of enance                              |
| Concept    | Functions and block diagrams of various components                    | Concept of HV equipment installation        | AC                                      | Concept of<br>Refrigeration<br>Air-condition |                                       | Concept of heating and ventilation         |
| Facts      | Laws of<br>Thermodynamics                                             | Components of<br>Air-conditioning<br>System | Component<br>air supply<br>system       |                                              | ontrol<br>omponents                   | Insulation,<br>lubricants,<br>Refrigerants |

**Contents: Theory** 

| Chapter | Name of the Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hours | Marks |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
|         | Basic Concepts:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |       |
| 01      | <ul> <li>1.1 First &amp; second laws of thermodynamics.</li> <li>1.2 Concept of heat engine, heat pump and refrigerator.</li> <li>1.3 Definitions of refrigeration, airconditioning, ton of refrigeration, COP, Expression of COP of ideal refrigerator/heat pump, enthalpy, entropy.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03    | 06    |
| 02      | Types of refrigeration systems:  2.1 Vapour compression refrigeration system(VCRS) — components used in vapour compression system, operation of vapour compression system, its representation on P – H and T - S diagrams, effect of superheating and under - cooling of refrigerant ( no numericals).  2.2 Vapour absorption system(simple & practical ammonia — water systems only), its operation & components, its merits and demerits compared to VCRS.  2.3 Air refrigeration system – components used in air refrigeration system, its operation and applications.                                                                                                                                                                                                                                                                                | 06    | 10    |
| 03      | Refrigerants and Lubrication: 3.1 Classification of refrigerants. 3.2 Types of refrigerants presently in use. 3.3 Desirable properties of refrigerants (Physical, chemical, thermodynamic). 3.4 Applications of important refrigerants. 3.5 Eco-friendly refrigerants. 3.6 Properties of lubricants. 3.7 Lubricants and refrigerant compatibility. 3.8 Foaming of oil and crankcase electric heater. 3.9 Effect of lubricant flood back to compressor. 3.10 Additives used in lubricants. 3.11Necessity of oil separator.                                                                                                                                                                                                                                                                                                                                | 04    | 08    |
| 04      | Components of vapour compression system:  4.1 Various types of compressors – reciprocating (hermetic, semi sealed, open), rotary (centrifugal, lobe type, screw type, blade type), applications of each type.  4.2 Various types of condensers (air cooled, water cooled, evaporative), applications  4.3 Types of cooling towers – natural draft, forced draft,induced draft.  4.4 Types of evaporators – direct expansion type, flooded type, shell and coil type, double tube type, plate surface type  4.5 Throttling devices – hand expansion valve, constant pressure expansion valve, thermostatic expansion valve, high side float valve, capillary tube, electronic expansion valve  4.6 Accessories – receiver, oil separator, drier, strainer, solenoid valve.  (Note – schematic diagram and brief description only of the above components) | 12    | 22    |

|    | 4.7 Applications of refrigeration – Ice plant, water cooler, domestic refrigerator, milk dairy, cold storage, breweries, superconductors, transport refrigeration and air conditioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| 05 | <ul> <li>Airconditioning:</li> <li>5.1 Psychrometry – Definition, psychrometric properties of air, use of psychrometric chart</li> <li>5.2 Psychrometric processes &amp; their representation on psychrometric chart.</li> <li>5.3 Sling psychrometer.</li> <li>5.4 Airconditioning systems (Schematic layout, working and application of each of the following)</li> <li>Central airconditioning system – direct expansion type, chilled water type</li> <li>Package type airconditioning system</li> <li>Unitary air conditioning system, split type system</li> <li>Evaporative cooling</li> <li>5.5 Applications of airconditioning – comfort airconditioning, industrial airconditioning, transport air conditioning</li> </ul> | 08 | 14 |
| 06 | Air supply and distribution system:  6.1 Fans and blowers (centrifugal, axial flow) – schematic diagram and applications.  6.2 Filters – (Dry, viscous, wet, electronic type) – schematic diagram and applications.  6.3 Different types of humidifiers and dehumidifiers.  6.4 Grills and registers.  6.5 Duct system – heat gain or loss in ducts.  6.6 Causes of pressure loss through air ducts.  6.7 Air distribution system – perimeter system, extended plenum system, upward flow system, downward flow system, ejector system.  6.8 Return duct system.  (only schematic diagrams and brief description of the above systems)                                                                                               | 06 | 10 |
| 07 | <ul> <li>Thermal insulation:</li> <li>7.1 Desirable properties of insulating materials for airconditioning purpose.</li> <li>7.2 Different types of insulating materials used for airconditioning.</li> <li>7.3 Selection of insulating materials for walls, ceiling, floor, air ducts, chilled water pipes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                              | 02 | 06 |
| 08 | Controls used in airconditioning:  8.1 High pressure and low pressure cut-outs, overload protector, thermostat, oil safety switch, fusible plug, pressure equalizer  8.2 Microprocessor based controls and variable frequency drive  8.3 Fluid flow control devices  (simple sketch and wiring diagram is expected)                                                                                                                                                                                                                                                                                                                                                                                                                  | 03 | 08 |

20

|    | Heat load:                                                                                                       |     |     |
|----|------------------------------------------------------------------------------------------------------------------|-----|-----|
|    | 9.1 Various sources of heat load such as wall gain load, air change load, product load and miscellaneous load(No |     |     |
| 00 | numericals).                                                                                                     | 0.2 | 00  |
| 09 | 9.2 Concept of Sensible Heat Factor(SHF), RSHF, GSHF.                                                            | 03  | 08  |
|    | 9.3 Conditions of airconditioning and representation of comfort zone on psychrometric chart                      |     |     |
|    | 9.4 Determination of capacity of airconditioning unit by                                                         |     |     |
|    | referring tables only (no calculations)                                                                          |     |     |
|    | Heating and ventilation:                                                                                         |     |     |
|    | 10.1 Plain heating, electric heating, steam heating, hot water                                                   |     |     |
|    | heating, solar heating                                                                                           |     |     |
|    | 10.2 Heating with humidification and heating with                                                                |     |     |
| 10 | dehumidification                                                                                                 | 03  | 08  |
|    | 10.3 Natural ventilation                                                                                         |     |     |
|    | 10.4 Mechanical ventilation – 1) Air extraction system 2) Air                                                    |     |     |
|    | supply system, combined supply and extraction system.                                                            |     |     |
|    | Total                                                                                                            | 48  | 100 |

#### **Practical:**

Skills to be developed:

#### **Intellectual Skills:**

- 1. Interpret results
- 2. Write specifications

#### **Motor Skills:**

- 1. Conduct trial
- 2. Read drawing and identify components
- 3. Carry out Welding

### A) List of Practical:

- 1) To conduct trial on vapour compression test rig for finding its performance.
- 2) To know the constructional features & operation of hermetically sealed refrigeration compressor using a cut section model.
- 3) To trace &draw block diagram of control panel wiring with respect to thermostat, humidistat, overload protector ,solenoid valve etc. for refrigeration/room air conditioner.
- 4) To troubleshoot the faulty window air conditioning unit.
- 5) To demonstrate the working of window type room air conditioner.
- 6) To demonstrate the use of various tools used in refrigeration maintenance such as-tube cutter. bending tool, flaring tool(block and yoke type), swaging tool, brazing tool, blow lamp etc.
- 7) To understand & demonstrate the practices of leak detection, evacuation & gas charging of refrigeration system.
- 8) To write a report on a visit to central ice plant/ cold storage and to study various components of VCRS.
- 9) A) To write a report on visit to central A/C plant e.g. theatre, hospital, office etc.
  - B) To study different components of airconditioning system.
- 10) To collect information & prepare a report based on the following points:

  Manufacturers' technical specifications, features offered by different manufacturers,

Price range for refrigerators/window a/c.

11) To study dirrerent psychrometric processes.

### B) Demonstration:

- a) Demonstration and study of various tools used in refrigeration such as tube cutter, bending tools, flaring tool (block and yoke type), swaging tool, brazing tool, blow lamp etc.
- b) Demonstration of purging, gas charging, leak testing and pump down of the refrigeration system.

## A) Field work / Mini Project:

a. Imagine that you are going to purchase the window type airconditioner (assume suitable rating). Visit local market (if the market is not nearby you may use the Internet) and prepare a report based on the following points:

Manufactures, Technical specifications, Features offered by different manufacturers, Price range

Then select the airconditioner which you would like to purchase. Give justification for your selection in short.

#### B) Visit:

- a. Visit to airconditioned hotel or theater to study control panel and various controls, starting and stopping system, air supply and air return system. Write a detailed report.
- b. Visit to cold storage to study different components of vapour compression system, temperature and humidity conditions required for different food items.

**Note:** For mini projects and visits utilize professional practices periods

# **Learning Resources:**

#### **Books:**

| Sr.<br>No. | Author                    | Title                                        | Publisher                      |  |  |
|------------|---------------------------|----------------------------------------------|--------------------------------|--|--|
| 01         | P. N. Anathanarayanan     | Basic Refrigeration and Airconditioning      | Tata Mcgraw Hill, New<br>Delhi |  |  |
| 02         | M. Adithan, S.C. Laroyia, | Practical Refrigeration and Air-conditioning | New Age International (P) Ltd. |  |  |

**Course Name: Electrical Engineering Group** 

Course Code : EE/EP
Semester : Sixth

**Subject Title: Industrial Projects** 

Subject Code: 12237

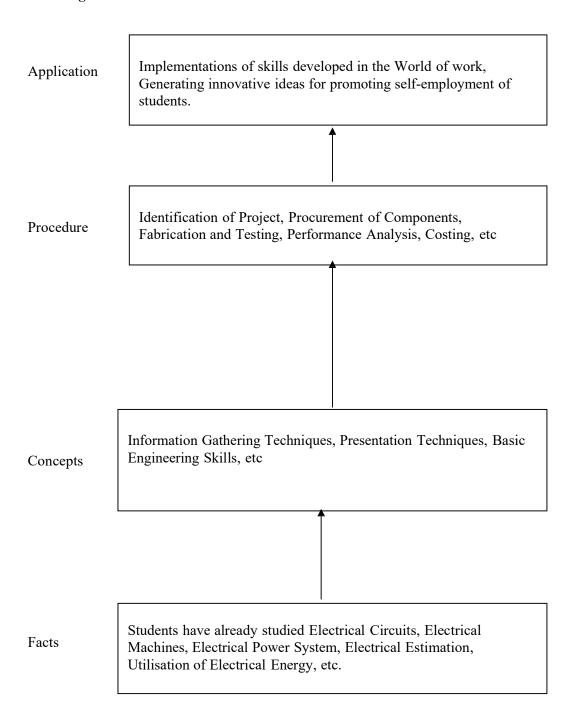
## **Teaching and Examination Scheme:**

| Teaching Scheme |    | <b>Examination Scheme</b> |              |    |    |     |     |       |
|-----------------|----|---------------------------|--------------|----|----|-----|-----|-------|
| TH              | TU | PR                        | PAPER<br>HRS | TH | PR | OR  | TW  | TOTAL |
|                 |    | 04                        |              |    |    | 50# | 50@ | 100   |

## Note: - Actual work of project should be done, on the project selected in fifth semester.

#### Rationale:

Diploma holders need to be capable of doing self study throughout their life as the technology is developing with fast rate. Student will be able to find out various sources of technical information and develop self-study techniques to prepare a project and write a project report.


This subject is intended to teach students to understand facts, concepts and techniques of electrical equipments, its repairs, fault finding and testing, estimation of cost and procurement of material, fabrication and manufacturing of various items used in electrical field. This will help the students to acquire skills and attitudes so as to discharge the function of supervisor in industry and can start his own small-scale enterprise.

# **Objectives:**

The students will be able to,

- 1. Work in Groups, Plan the work, and Coordinate the work.
- 2. Develop leadership qualities.
- 3. Analyse the different types of Case studies.
- 4. Develop Innovative ideas.
- 5. Develop basic technical Skills by hands on experience.
- 6. Write project report.
- 7. Develop skills to use latest technology in Electrical field.

# **Learning Structure:**



## **Contents:**

Two hours should be allotted for giving the Instructions for preparing a Project Report. (Refer Guideline Document for Format of Project Report)

## **Projects**

- 1. Design of Illumination Scheme(Up to 20 KW) for Hospital / Shopping Mall/Cinema Theatre/Commercial Complex/Educational Institute/Industrial Complex.
- 2. Design of Rural Electrification Scheme for small Village, Colony.
- Case Studies Related to Industries Operation / Maintenance / Repair and Fault Finding. (Refer Guideline Document).
- 4. Energy Conservation and Audit.
- 5. Substation Model (Scaled)
- 6. Wind Turbine Model (Scaled)
- 7. Pole Mounted Substation Model (Scaled)
- 8. Rewinding of Three Phase/Single Phase Induction Motor.
- 9. Rewinding of Single Phase Transformer.
- 10. Fabrication of Inverter up to 1000 VA.
- 11. Fabrication of Battery Charger.
- 12. Fabrication of Small Wind Energy System for Battery Charging.
- 13. Fabrication of Solar Panel System for Battery Charging.
- 14. Microprocessor/ Micro controller Based Projects.
- 15. PC Based Projects.
- 16. Simulation Projects.

#### Seminar

Seminar on any relevant latest technical topic based on latest research, recent trends, new methods and developments in the field of Electrical Engineering / Power Electronics.

**Note:** (1) One Project (2) Seminar will be held under Professional Practices.

# **Learning Resources:**

# 1. Books/Magazines:

| Sr. No. | Name of the Magazine                                                                |
|---------|-------------------------------------------------------------------------------------|
| 1.      | IEEE Transactions/Journals                                                          |
| 2.      | Electrical India                                                                    |
| 3.      | IEEMA Journal                                                                       |
| 4.      | Elecrama                                                                            |
| 5.      | Technorama                                                                          |
| 6.      | Urja                                                                                |
| 7.      | Industrial Automation                                                               |
| 8.      | Electronics for You                                                                 |
| 9.      | Electronics Projects                                                                |
| 10.     | Computer World                                                                      |
| 11.     | Chip                                                                                |
| 12.     | Any Journal Related to Electrical Engg./Electronics/Computer/Information Technology |

# 2. Website:

Using any search engine, such as http://www.google.co.in/ the relevant information can be searched on the Internet.

**Course Name: Electrical Engineering Group** 

Course Code : EE/EP
Semester : Sixth

**Subject Title: Professional Practices-VI** 

Subject Code: 12238

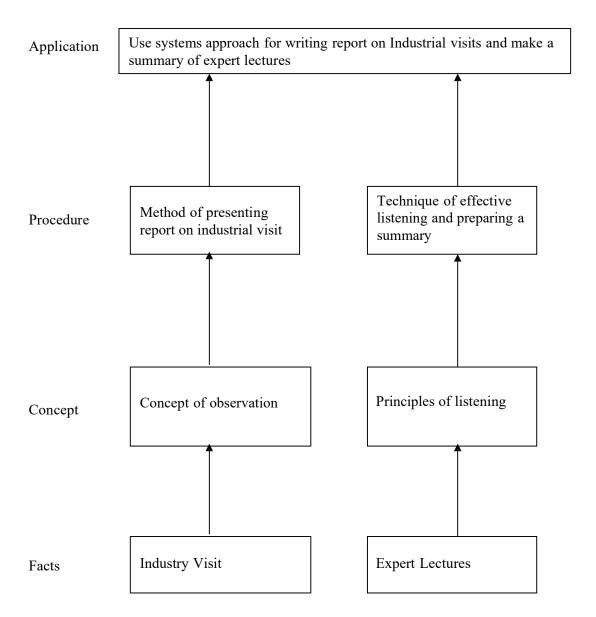
## **Teaching and Examination Scheme:**

| Teaching Scheme |    |    |              |    | Examinati | on Scheme |     |       |
|-----------------|----|----|--------------|----|-----------|-----------|-----|-------|
| TH              | TU | PR | PAPER<br>HRS | TH | PR        | OR        | TW  | TOTAL |
|                 |    | 05 |              |    |           |           | 50@ | 50    |

#### **Rationale:**

Most of the diploma holders join industries. Due to globalization and competition in the industrial and service sectors the selection for the job is based on campus interviews or competitive tests.

While selecting candidates a normal practice adopted is to see general confidence, attitude and ability to communicate and attitude, in addition to basic technological concepts.


The purpose of introducing professional practices is to provide opportunity to students to undergo activities which will enable them to develop confidence. Industrial visits, expert lectures, seminars on technical topics and group discussion are planned in a semester so that there will be increased participation of students in learning process.

## **Objectives:**

Student will be able to:

- 1. Acquire information from different sources.
- 2. Prepare notes for given topic.
- 3. Present given topic in a seminar.
- 4. Interact with peers to share thoughts.
- 5. Prepare a report on industrial visit, expert lecture.

# **Learning Structure:**



| Sr. No. | Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hours |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 01      | Structured industrial visits shall be arranged and report of the same should be submitted by the individual student, to form a part of the term work.  (minimum 3 visits)  Following are the suggested type of Industries/ Fields -  i) Visit to Load Dispatch Center.  ii) Visit to Transformer Repair Workshop.  iii) Visit to Electrical Machine Manufacturing Unit.  iv) Visit to Industry of Power Electronics Devices.  v) Visit to Maintenance Department of Large Industry.  vi) Visit to Multi Storied Building.  vii) Visit to Loco Shade. | 21    |
| 02      | The Guest Lecture/s at least two of two hours duration each from field/industry experts, professionals are to be arranged from the following or alike topics. The brief report to be submitted on the guest lecture by each student as a part of Term work  a) New Trends in Power Electronics Devices b) Eco friendly Air Conditioning/Refrigeration c) TQM d) Recent Modifications in IE Rules e) Functioning of Electricity Regulatory Commission f) Fourth Stage of Koyana Hydro Station g) Recent trends in Power Generation                    | 14    |
| 03      | Information Search, data collection and writing a report on the topic  a) Collection of data for comparison of Transformer Companies b) Latest trend in Classification of Insulating materials c) Design Considerations for Manufacture of Dry Type Transformers d) State and National Statistics for Power Generation e) Comparison of Cost per unit generated by various methods of Power Generation f) Safety considerations for Generation                                                                                                       | 15    |
| 04      | The students should discuss in group of six to eight students and write a brief report on the same as a part of term work. The topic of group discussions may be selected by the faculty members. Some of the suggested topics are - i) Role of Electrical Engineer in disaster management. j) Scope of out sourcing of Electrical Engineering services. k) Pollution control.                                                                                                                                                                       | 14    |
| 05      | Seminar Presentation The students should select a topic for Seminar based on recent developments in Electrical engineering field, emerging technology etc.                                                                                                                                                                                                                                                                                                                                                                                           | 16    |
|         | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80    |

**Course name: Electrical Engineering Group** 

Course code : EE/EP
Semester : Sixth

Subject title: Electric Traction - II (Elective III for EE) (Elective II for EP)

Subject code: 12233

## **Teaching and Examination Scheme:**

| Teac | ching Sch | ieme |              |     | Examinati | on Scheme |     |       |
|------|-----------|------|--------------|-----|-----------|-----------|-----|-------|
| TH   | TU        | PR   | PAPER<br>HRS | TH  | PR        | OR        | TW  | TOTAL |
| 03   |           | 02   | 03           | 100 |           | 25#       | 25@ | 150   |

**Notes:** Prerequisite for this subject is Electric Traction – I

#### **NOTE:**

<sup>3</sup>/<sub>4</sub> Two tests each of 25 marks to be conducted as per the schedule given by SBTE.

3/4 Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

#### Rationale:

Electric traction means a locomotion in which the driving force is obtained from electric motors. One of the practical applications of electricity, which enters into the everyday life of many of us, is its use in service of mass transport – the electric propulsions of vehicles – electric trains, trolley buses, tram cars and in the latest developments such as metro and sky bus.

In view of the growing importance and technological developments, which have come about in this area in the recent past; for Electrical Engineering students, it is desirable to study the course dealing with electric traction. This subject belongs to technology area.

### **Objectives:**

The students will be able to,

- (1) List and explain different equipments used in the power circuit and auxiliary circuit of electric locomotives.
- (2) Explain importance of maintenance of electric locomotive.
- (3) State and explain functioning of the protection systems used in electric locomotives.
- (4) Describe the recent trends in electric traction; Such as, LEM propelled Traction.
- (5) Appreciate the use of computers in electric traction management.

# **Learning Structure:**

| Application | Use of electric traction as service for mass transport                                                                                                                                       |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L           |                                                                                                                                                                                              |
| Procedure   | <ol> <li>Study of operation/maintenance/control of different types of Electric locomotives.</li> <li>Use of LIM for Traction.</li> <li>Use of Computer in management of Traction.</li> </ol> |
|             |                                                                                                                                                                                              |
| Principle   | <ol> <li>Principle of LEM.</li> <li>Principle of Magnetic Levitation</li> <li>Principle of Protection System.</li> </ol>                                                                     |
|             |                                                                                                                                                                                              |
| Facts       | Electrical Machines, switchgears, Electrical Safety, Electrical Circuits and protection                                                                                                      |

# **Contents: Theory:**

| Chapter       | Name of the Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hours    | Marks       |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|
| Chapter<br>01 | <ul> <li>Name of the Topics</li> <li>Electric Locomotives: <ol> <li>1.1 - Nomenclature used For Electric Locomotives</li> <li>1.2 - Types of Electric Locomotives By Nomenclature.</li> <li>1.3 - AC Locomotive: <ol> <li>Power Circuit Equipments and Auxiliary Circuit Equipments.</li> <li>1.3.2 - Equipments in Power Circuit and their Functions: <ol> <li>Power Circuit Diagram of AC Locomotive: Pantograph, Circuit breaker, Tap Changer Traction Transformer, Rectifier, Smoothing Choke Traction Motor. </li> <li>1.3.3 - Equipments in Auxiliary Circuit &amp; their Functions: Head Light, Flasher Light, Horn, Marker Light, Batteries, Arno Converter, Blowers, Exhausters Compressors, Selsyn transformer. </li> <li>1.3.4 - List and Purpose of Different Type of Relays: <ol> <li>1.3.5 - List and Purpose of Different Type of Contactors:</li> </ol> </li> <li>1.4 - Three Phase Locomotive. <ol> <li>1.4.1 - Power Circuit of Three Phase Locomotive.</li> <li>1.4.2 - Power Supply Arrangement for Auxiliary</li> </ol> </li> </ol></li></ol></li></ol></li></ul> | Hours 14 | Marks<br>24 |
| 02            | Maintenance of Locomotives:  2.1 – Locomotive Maintenance 2.2 – Need of Maintenance and Policy of Obselence. 2.3 – Defects.  2.4 – Ideal Maintenance:  - Means to Improve the Reliability of Locomotive.  - Means to Improve Availability of Locomotive.  - Means to Reduce Maintenance Cost.  - Maintenance Record.  - Training Facility.  - Characteristics of Efficient Maintenance.  2.5 – Electrical Faults and Their Causes.  2.6 – Fault Localisation.  2.7 – Necessity of Testing.  - Testing Procedure.  - Individual Equipment Tests.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10       | 24          |
| 03            | Protection of Electric Locomotive:  3.1 – Introduction.  3.2 – Broad Strategy For Protection.  3.3 – Surge Protection:  - Direct Lightening Strokes.  - Switching Surges: External and Internal.  3.4 – Overload Protection of Main Power Circuit.  3.5 – Earth Fault Protection of Power and Auxiliary Circuit.  3.6 – Protection from Over Voltage and Under Voltage.  3.7 – Differential Current Protection of Traction Circuits.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 08       | 20          |

|    | 2.0 D. A. D                        | T  |    |
|----|---------------------------------------------------------------|----|----|
|    | 3.8 – Protection Against High and Low Air Pressure in the     |    |    |
|    | Compressed Air Circuit.                                       |    |    |
|    | 3.9 – Temperature Monitoring.                                 |    |    |
|    | 3.10 – Protection of Transformer By Buchholz's Relay.         |    |    |
|    | 3.11 – Monitoring of Ventilation System of Key Locomotive     |    |    |
|    | Equipments.                                                   |    |    |
|    | 3.12 – Protection Against Accidental Contact with HT          |    |    |
|    | Equipment.                                                    |    |    |
|    | 3.13 – Protection Against Fire.                               |    |    |
|    | - Fire Prevention Strategy.                                   |    |    |
|    | LEM Propelled Traction: 4.1 – Introduction.                   |    |    |
|    |                                                               |    |    |
|    | 4.2 – Linear Electric Motor (LEM)                             |    |    |
|    | 4.3 – Linear Induction Based Traction System:                 |    |    |
|    | - Moving Primary Fixed Secondary Single Sided LIM.            |    |    |
|    |                                                               |    |    |
|    | - Moving Secondary Fixed Primary Single Sided                 |    |    |
|    | LIM. Maying Duimany Fixed Secondary Double Sided              |    |    |
|    | - Moving Primary Fixed Secondary Double Sided LIM.            |    |    |
|    |                                                               |    |    |
|    | 4.4 – Strengths/Weaknesses of LIM Propelled Railway Traction: |    |    |
|    | - Strengths of LIM Propelled Railway Traction                 |    |    |
|    | System.                                                       |    |    |
|    | - Weaknesses of LIM Propelled Railway Traction                |    |    |
| 04 | System.                                                       | 10 | 16 |
|    | 4.5 – Practical Possibilities of LIM Propelled                |    |    |
|    | Transportation.                                               |    |    |
|    | 4.6 – Inputs/Modifications for Adoption of LIM                |    |    |
|    | Propulsion in the Existing System:                            |    |    |
|    | - Track Modification.                                         |    |    |
|    | - Vehicle Modification.                                       |    |    |
|    | - Voltage and Speed Control.                                  |    |    |
|    | 4.7 – LIM Propelled Underground Metro Rail System:            |    |    |
|    | - Factors Influencing Adoption of LIM for Metro               |    |    |
|    | Rail.                                                         |    |    |
|    | - International Scenario.                                     |    |    |
|    | 4.8 – Wheel Less Traction:                                    |    |    |
|    | - Levitation Schemes.                                         |    |    |
|    | - Present Scenario.                                           |    |    |
|    | Application of Computers in Management of Electric Traction:  |    |    |
|    | 5.1 – Introduction.                                           |    |    |
|    | 5.2 – Computer's Capability Relevant to Electric Traction     |    |    |
|    | Management.                                                   |    |    |
|    | 5.3 – Areas of Computer Application in Traction System        |    |    |
| 05 | Management:                                                   | 06 | 16 |
|    | - Optimisation of OHE and Power Supply                        |    | 10 |
|    | Installation Designs.                                         |    |    |
|    | - Computer Aided Locomotive Designs.                          |    |    |
|    | - Monitoring of Maximum Demand.                               |    |    |
|    | - Energy Saving Driving Approach.                             |    |    |
|    | - Training of Drivers on Simulators.                          |    |    |

| - Aiding Drivers and Maintenance Depot Through On Board Computers - History of Locomotive and OHE Equipment Failure Analysis Monitoring Execution of Trip Inspection - Schedules of Locomotives Inventory Control.  5.4 – Possible Other Areas for Computer Controlled Monitoring.  5.5 – Advantages of Use of Computers for Management of Electric Traction System. |    |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Total                                                                                                                                                                                                                                                                                                                                                                | 48 | 100 |

# **Assignments:**

# **Drawing Sheets:**

- (i) Drawing (on half Imperial sheet) for Power Circuit of any type of Electric Locomotive
- (ii) Drawing (on half Imperial sheet) for Protection of Electric Locomotive.

( **Note:** Students should be able to identity, explain the functions of various equipments used in Electric locomotive).

# **Mini Project:**

Collection of information using Internet on any two topics in the contents and submission of printouts

# **Learning Resources:**

## **Books:**

| Sr. No. | Author                        | Title                             | Publisher                                              |
|---------|-------------------------------|-----------------------------------|--------------------------------------------------------|
| 1.      | H. Partab                     | Modern Electric Traction          | Dhanpat Rai & Sons                                     |
| 2.      | J. Upadhyay<br>S. N. Mahendra | Electric Traction                 | Allied Publishers Ltd.                                 |
| 3.      | Om Prakash Kesari             | Viddut Engine Parichay (In Hindi) | S. P. Graphics, Nashik.<br>Phone No. (0253)<br>2580882 |

**Course Name: Electrical Engineering Group** 

Course Code : EP/EE
Semester : Sixth

Subject Title: Maintenance and Repairs of Electrical Equipment

(Elective- III for EE and Elective II for EP)

Subject Code: 12234

#### **Teaching and Examination Scheme:**

| Teac | ching Sch | ieme |              |     | Examinati | on Scheme |     |       |
|------|-----------|------|--------------|-----|-----------|-----------|-----|-------|
| TH   | TU        | PR   | PAPER<br>HRS | TH  | PR        | OR        | TW  | TOTAL |
| 03   |           | 02   | 03           | 100 |           | 25#       | 25@ | 150   |

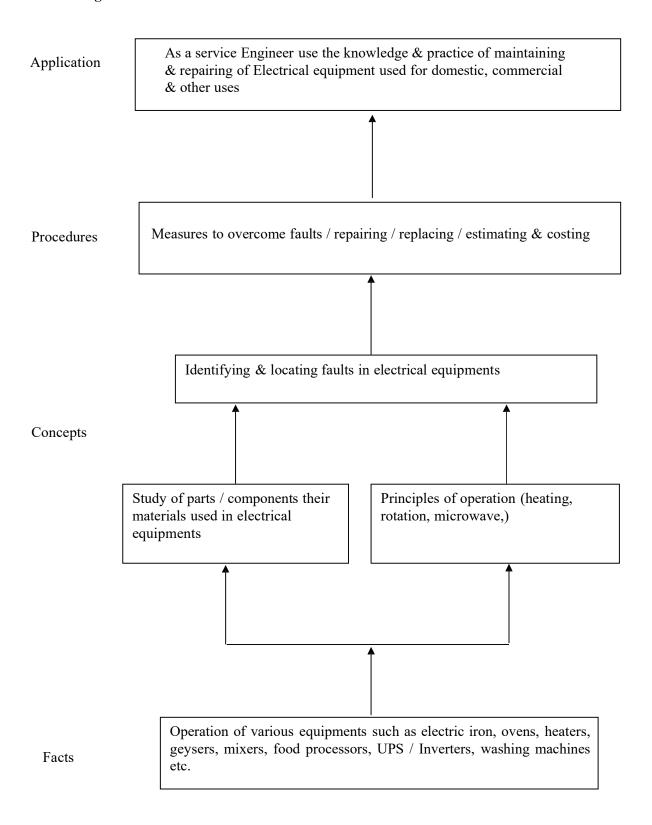
### NOTE:

<sup>3</sup>/<sub>4</sub> Two tests each of 25 marks to be conducted as per the schedule given by SBTE.

3/4 Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

#### **Rationale:**

This subject is classified as technology subject which intends to have hands on experience in handling, maintaining, repairing, estimating & costing for repairs of various electrical equipments used in domestic, & commercial fields.


This will enable him to be a self-entrepreneur & can get job as sales & service engineer.

## **Objective:**

The student will be able to:

- 1. Test different electrical equipments as per I S.
- 2. Prepare cost & estimate of repairs & selection of components.
- 3. Identify faults & measures to repair faults.
- 4. Identify specific tools for maintenance.
- 5. To select appropriate UPS / Inverters for given application.

# **Learning Structure:**



# **Contents: Theory**

| Chapter | Name of the Topic                                                                                                                                                                                                                                                                                                                                                                      | Hours | Marks |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 1       | Introduction  Principle different effects of electric currents, materials used in electrical equipments, tools / instruments necessary for repair works, jointing methods, soldering, testing of instruments, Interpretation, location & identification of faults, recording / estimation of materials / components required & their cost, approximate costing of repair of equipment. | 08    | 18    |
| 2       | Domestic electrical equipment, Principle, types, construction, operation, testing, fault finding, dismantling, assembly & testing after repairs of following equipments electric Iron all types, electric ovens, electric fans & regulators, water heaters, geysers mixers, food processors, toasters.                                                                                 | 16    | 32    |
| 3       | Circuits used for control & regulation of electronic circuits like rectifiers amplifier timer, oscillator, identification of component, component testing, with multimeters replacement of components, microwave & use microwave for heating, laser & laser equipment                                                                                                                  | 08    | 18    |
| 4       | Advanced equipments principle, types, construction, operation, Testing, fault finding, dismantling, assembly & testing after repairs of following equipments- UPS / Inverters, battery chargers, microwaves ovens, air coolers, washing machines — semi automatic / fully automatic, remote controllers of different equipments, VCD / DVD / ACD players.                              | 16    | 32    |
|         | Total                                                                                                                                                                                                                                                                                                                                                                                  | 48    | 100   |

# **Practical:**

# Skills to be developed:

# **Intellectual Skills:**

- 1. Analytical Skills
- 2. Identification Skills
- 3. Fault finding Skills

# **Motor Skills:**

- 1. Measuring Skill
- 2. Connecting instruments
- 3. Proper use of instruments, tools for repairs

### A) Laboratory Experiences:

Dismantling, assembly, testing, preparation of list of components, parts and their cost for:

- 1) Electric iron all types
- 2) Electric oven
- 3) Electric toasters
- 4) Electric fan (CF, TF, PF, & EF & regulators)
- 5) Water heaters & geysers
- 6) Mixer & food processors
- 7) UPS / Inverters / battery chargers
- 8) Air coolers (portable / desert type)
- 9) Semiautomatic & fully automatic washing machine
- 10) VCD / DVD / AVD players
- 11) Microwave Ovens
- 12) All types remote controllers

## B) Field work:

- 13) Visit servicing centers of manufacturing companies, write the procedure of servicing of any one of them
- 14) Visit a manufacturing unit & prepare a report based on it.

## C) Mini project:

- 15) For given specific application of any two equipments collect literature of different manufacturing company & prepare a comparative chart
- 16) Prepare test reports & bills for servicing of above any two equipments.

### **Learning Resources:**

1. Service Manuals of manufacturers

**Course Name**: Electrical Engineering Group

Course Code : EP/EE Semester : Sixth

**Subject Title** : Microprocessors and Microcontrollers

(Elective II for EP and Elective-III for EE)

Subject Code : 12236

#### **Teaching and Examination Scheme:**

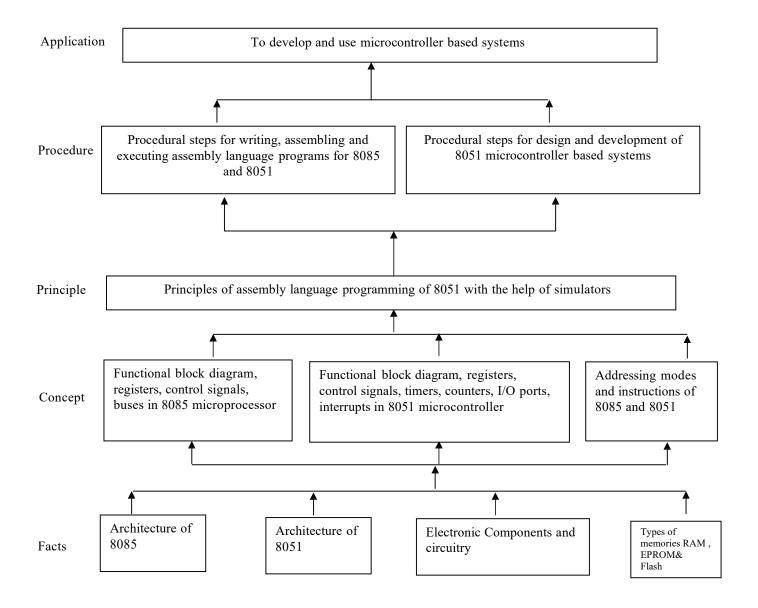
| Teac | ching Sch | eme |              |     | Examination | on Scheme |     |       |
|------|-----------|-----|--------------|-----|-------------|-----------|-----|-------|
| TH   | TU        | PR  | PAPER<br>HRS | TH  | PR          | OR        | TW  | TOTAL |
| 03   |           | 02  | 03           | 100 |             | 25#       | 25@ | 150   |

#### NOTE:

- <sup>3</sup>/<sub>4</sub> Two tests each of 25 marks to be conducted as per the schedule given by SBTE.
- 3/4 Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

#### Rationale:

Today microprocessors and microcontrollers have become an integral part of all automatic and semi automatic machines. Therefore there is a growing need of engineers / technicians in this field. Hence, it is necessary to study microcontroller basics, hardware and its programming.


This subject covers microprocessor 8085 and microcontroller 8051 architecture, its instruction set, programming and applications. After completing this subject the student can write and execute programs for microcontroller and microprocessor based applications.

## **Objectives:**

The student will be able to

- 1. Describe architecture and operation of microprocessor 8085.
- 2. Develop assembly language programs using instruction set of 8085.
- 3. Describe architecture and operation of microcontroller 8051.
- 4. Develop assembly language programs using instruction set of 8051.
- 5. Design and develop microcontroller based systems.
- 6. Explain various applications of microcontrollers

# **Learning Structures:**



| Chapter    | Name of Topic                                                | Hours | Marks |
|------------|--------------------------------------------------------------|-------|-------|
| 01         | Microprocessor 8085                                          |       |       |
| 1.1        | Evolution of microprocessors Terminology used in             |       |       |
|            | microprocessor-Hardware, Software, Firmware, Bus, Address    |       |       |
|            | Bus, Data bus, Control bus, Comparison of machine language,  |       |       |
| 1.0        | assembly language and high level language.                   | 08    | 16    |
| 1.2        | Architecture and features of 8085                            |       |       |
| 1.3        | Pin diagram                                                  |       |       |
| 1.4<br>1.5 | Control signals                                              |       |       |
|            | Demultiplexing of address & Data Bus                         |       |       |
| 02         | Introduction Microcontroller Basics                          |       |       |
| 2.1        | Introduction and applications                                |       |       |
| 2.2        | Comparison between microcontrollers and microprocessors      |       |       |
| 2.3        | Evolution of microcontrollers                                | 10    | 20    |
| 2.4        | Terminology: -RISC,CISC,VLIW,Harvard and Von Neumann         | 10    | 20    |
|            | Architectures                                                |       |       |
| 2.5        | Memory types: RAM, EEPROM and Flash                          |       |       |
| 2.6        | Commercial microcontroller device                            |       |       |
| 03         | 8051 Architecture                                            |       |       |
| 3.1        | MCS-51 Architecture & features of 8051 microcontroller       |       |       |
|            | 8051 pin description                                         |       |       |
| 3.2        | 8051 connections and Parallel I/O ports                      |       |       |
| 3.3        | Registers in 8051 and memory organisation                    | 10    | 24    |
| 3.4        | General purpose or working registers                         |       |       |
| 3.5        | Stack Pointer and Program counter                            |       |       |
| 3.6        | Special function registers (SFR : Program Status word : Data |       |       |
| 3.7        | pointer (DPTR) : Timer resisters : Ports Control registers)  |       |       |
| 04         | 8051 addressing modes and instructions                       |       |       |
| 4.1        | 8051 addressing modes                                        |       |       |
| 4.2        | 8051 instruction set                                         | 12    | 24    |
| 4.3        | 8051 assembler and assembling 8051 program                   | 12    | 24    |
| 4.4        | Software simulators of 8051 (SPJ, KIEL)                      |       |       |
| 4.5        | 8051 instructions and simple programs                        |       |       |
| 05         | 8051 interrupts, timer/counters                              |       |       |
| 5.1        | Interrupts in 8051                                           |       |       |
| 5.2        | Initializing 8051 interrupts                                 | 08    | 16    |
| 5.3        | Interrupt priorities                                         |       |       |
| 5.4        | Timers and counters, timer counter modes                     |       |       |
|            | Total                                                        | 48    | 100   |

# **Practical:**

# Skills to be Developed:

# **Intellectual Skills:**

- 1. Logical development
- 2. Programming skills

## **Motor Skills:**

- 1. Data entry, Error Correction and Execution of assembly language programms
- 2. Connection Skills

### **List of Practicals:**

Using microcontroller 8051 kit:

- 1. Demonstration and study of microcontroller kit
- 2. Demonstration and use of software simulator / assembler
- 3. Programming examples (any two) Data transfer instructions
- 4. Programming examples (any two) Logical Operations
- 5. Programming examples (any two) Jump and Call instructions
- 6. Demonstration and testing of the following applications (Any four)
  - · Keyboard and LED Interface
  - · D/A or A/D converter Interface
  - · Relay Interface
  - · Stepper motor control
  - · DC motor control
  - · Any other practical application using microcontroller 8051

# **Learning Resources:**

### **Books:**

| Sr.<br>No. | Author           | Title                                                               | Publisher                                               |
|------------|------------------|---------------------------------------------------------------------|---------------------------------------------------------|
| 01         | Mazadi Mckinlay  | The 8051 Microcontroller and Embedded systems                       | Pearson 2nd Edition                                     |
| 02         | Kenneth J Ayala  | 8051 microcontrollers architecture,<br>Programming and Applications | International Thomson publishing, India                 |
| 03         | Ajay V. Deshmukh | Microcontrollers theory and applications                            | TMH, New Delhi                                          |
| 04         | Ramesh Gaonkar   | Programming, and Applications with the 8085                         | Penram International<br>Publishing (India) Pvt.<br>Ltd. |