#### STATE BOARD OF TECHNICAL EDUCATION, JHARKHAND

# TEACHING AND EXAMINATION SCHEME FOR POST S.S.C. DIPLOMA COURSES

## **COURSE NAME : ELECTRICAL ENGINEERING GROUP**

### **COURSE CODE : EE / EP**

**DURATION OF COURSE : 6 SEMESTERS** 

#### **SEMESTER : THIRD**

#### WITH EFFECT FROM 2011-12 DURATION : 16 WEEKS

FULL TIME / PART TIME : FULL TIME

| SR. | SURIECT TITLE                                | Abbrev | SUB   | TE<br>S | ACHI<br>CHEM | NG<br>IE |       |     |     | EXAM | IINATIO | ON SCHI | EME |     |     |         |
|-----|----------------------------------------------|--------|-------|---------|--------------|----------|-------|-----|-----|------|---------|---------|-----|-----|-----|---------|
| NO. | SUBJECT TITLE                                | iation | CODE  | тц      | TU           | DD       | PAPER | ТН  | (1) | PR   | (4)     | OR      | (8) | TW  | (8) | SW      |
|     |                                              |        |       | п       | 10           | Гĸ       | HRS   | Max | Min | Max  | Min     | Max     | Min | Max | Min | (16003) |
| 1   | Applied Mathematics                          | AMS    | 12054 | 03      |              |          | 03    | 100 | 40  |      |         |         |     |     |     |         |
| 2   | Electrical Circuits and Network              | ECN    | 12055 | 04      |              | 02       | 03    | 100 | 40  | 50#  | 20      |         |     | 25@ | 10  |         |
| 3   | Electrical Measurements                      | ELM    | 12056 | 03      |              | 02       | 03    | 100 | 40  | 50#  | 20      |         |     | 25@ | 10  |         |
| 4   | Electrical Power<br>Generation               | EPG    | 12057 | 03      |              |          | 03    | 100 | 40  |      |         |         |     |     |     | 50      |
| 5   | Basic Electronics                            | BEX    | 12058 | 04      |              | 02       | 03    | 100 | 40  | 50#  | 20      |         |     | 25@ | 10  | 50      |
| 6   | Electrical Workshop                          | EWP    | 12059 |         |              | 04       |       |     |     |      |         |         |     | 50@ | 20  |         |
| 7   | Elements of Mechanical and Civil Engineering | EMC    | 12060 | 01      |              | 02       |       |     |     |      |         |         |     | 25@ | 10  |         |
| 8   | Professional Practices-III                   | PPS    | 12061 |         |              | 05       |       |     |     |      |         |         |     | 50@ | 20  |         |
|     |                                              |        | TOTAL | 18      |              | 17       |       | 500 |     | 150  |         |         |     | 200 |     | 50      |

# Student Contact Hours Per Week: 35 Hrs.

### THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH.

Total Marks : 900

(a) Internal Assessment, # External Assessment, N

No Theory Examination.

Abbreviations: TH-Theory, TU- Tutorial, PR-Practical, OR-Oral, TW- Termwork, SW- Sessional Work

Conduct two class tests each of 25 marks for each theory subject. Sum of the total test marks of all subjects is to be converted out of 50 marks as sessional work (SW).

> Progressive evaluation is to be done by subject teacher as per the prevailing curriculum implementation and assessment norms.

Code number for TH, PR, OR and TW are to be given as suffix 1, 4, 8, 9 respectively to the subject code.

w.e.f. Academic Year 2011-12

Course Name : Electrical and Electronics Engineering Group Course code : EE/EP/ET/EJ/EN/EX/IE/IS/IC/IU/DE/EV/MU/ED/EI Semester : Third Subject Title : Applied Mathematics Subject Code : 12054

### **Teaching and Examination Scheme:**

| Teaching Scheme |    |    |              |     | Examinati | on Scheme |    |       |
|-----------------|----|----|--------------|-----|-----------|-----------|----|-------|
| TH              | PR | TU | PAPER<br>HRS | TH  | PR        | OR        | TW | TOTAL |
| 03              |    |    | 03           | 100 |           |           |    | 100   |

NOTE:

> Two tests each of 25 marks to be conducted as per the schedule given by SBTE.

# Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

### **Rationale:**

The study of mathematics is necessary to develop the skills essential for studying new technological development. This subject introduces some applications of engineering, through which the student can understand the link of mathematics with engineering principles.

**Objective:** The Student will be able to:

- 1. Apply Mathematical term, concept, principles, and different methods
- 2. Apply Mathematical methods to solve technical problems,
- 3. Execute management plans with precision.
- 4. Use Mathematical techniques necessary for daily and practical problems.

# **LEARNING STRUCTURE:**

| Applications Apply the principles of Mathematics to solve problems in Electrical and Electronics Field |                                                                                                                                                      |                                                              |                                                                                                              |                                                                                          |                                                                                                                                                                           |  |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                        |                                                                                                                                                      |                                                              | Ť                                                                                                            |                                                                                          |                                                                                                                                                                           |  |
| Procedure                                                                                              | Methods of<br>finding<br>integration,<br>definite<br>and itsMethods of<br>solving<br>differential<br>equation of<br>first order and<br>first degree. |                                                              | Use of<br>Laplace<br>transform for<br>solving<br>problems of<br>Differential<br>Equetions                    | Use of<br>Fourier<br>series for<br>expansion<br>of function<br>at the given<br>intervals | Methods for finding<br>approximate roots by<br>using bisection,<br>Regula-falsi,<br>Newton-raphson<br>method, Gauss<br>elimination, Jacobi<br>and Gauss-seidal<br>methods |  |
|                                                                                                        |                                                                                                                                                      |                                                              | Ť                                                                                                            |                                                                                          |                                                                                                                                                                           |  |
| Concept                                                                                                | Integration of<br>standard<br>functions.<br>Rules of<br>integration.<br>Integration by<br>parts, partial<br>fractions.                               | Order,<br>degree of<br>differential<br>equation.             | Laplace<br>Transform of<br>standard<br>functions,<br>properties.<br>Inverse L. T.<br>Convolution<br>theorem. | Eular's<br>formula for<br>Fourier series<br>expansion.                                   | Higher order<br>algebraic<br>equations.<br>Upper and<br>lower triangular<br>matrix, iterative<br>methods.                                                                 |  |
|                                                                                                        |                                                                                                                                                      |                                                              | Î                                                                                                            |                                                                                          |                                                                                                                                                                           |  |
| Facts                                                                                                  | First order<br>differentiation.<br>Definition of<br>integration as<br>anti derivative.                                                               | Integration.<br>Definition<br>of<br>differential<br>equation | Definition of<br>Laplace<br>transform and<br>Inverse<br>Laplace<br>transform.                                | Definition<br>of periodic,<br>even and<br>odd<br>functions.                              | Relation between<br>degree of equation<br>and roots. Relation<br>between no. of<br>unknowns and<br>equations                                                              |  |

#### **Contents:** Theory

| Chapter | Name of the Topic                                                        | Hours | Marks |
|---------|--------------------------------------------------------------------------|-------|-------|
| •       | Integration:                                                             |       |       |
|         | 1.1 Definition of integration as anti-derivative. Integration            |       |       |
|         | of standard function.                                                    |       |       |
|         | 1.2 Rules of integration (Integrals of sum, difference, scalar           |       |       |
|         | multiplication).                                                         |       |       |
|         | 1.3 Methods of Integration.                                              | 10    | 16    |
|         | 1.3.1 Integration by substitution                                        |       |       |
|         | 1.3.2 Integration of rational functions.                                 |       |       |
|         | 1.3.3 Integration by partial fractions.                                  |       |       |
| 01      | 1.3.4 Integration by trigonometric transformation.                       |       |       |
|         | 1.3.5 Integration by parts.                                              |       |       |
|         | 1.4 <b>Definite Integration.</b>                                         |       |       |
|         | 1.4.1 Definition of definite integral.                                   | 0.4   | 00    |
|         | 1.4.2 Properties of definite integral with simple                        | 04    | 08    |
|         | problems.                                                                |       |       |
|         | 1.5 Applications of definite integrals.                                  |       |       |
|         | 1.5.1 Area under the curve.                                              | 0.2   | 0.0   |
|         | 1.5.2 Area between two curves.                                           | 02    | 08    |
|         | 1.5.3 Mean and RMS values                                                |       |       |
|         | Differential Equation                                                    | 08    | 16    |
|         | 2.1 Definition of differential equation, order and degree of             |       |       |
|         | differential equation. Formation of differential                         |       |       |
|         | equation for function containing single constant.                        |       |       |
|         | 2.2 Solution of differential equations of first order and first          |       |       |
| 02      | degree such as variable separable type, reducible to                     |       |       |
| 02      | Variable separable, Homogeneous, Nonhomogeneous,                         |       |       |
|         | Exact, Linear and Bernoulli equations.                                   |       |       |
|         | 2.3 Applications of Differential equations.                              | 02    | 04    |
|         | 2.3.1 Laws of voltage and current related to LC, RC, and LRC             |       |       |
|         | Circuits.                                                                |       |       |
|         |                                                                          | -     |       |
|         | Laplace I ransform                                                       |       |       |
|         | 3.1 Definition of Laplace transform, Laplace transform of                |       |       |
|         | standard functions.                                                      |       |       |
|         | 5.2 Froperties of Laplace transform such as Emeanty, first $\frac{1}{2}$ |       |       |
|         | shifting, second shifting, multiplication by t, division                 |       |       |
| 03      | Uy L.<br>2.2 Inverse Lonloss transforms Dronarties linearly first        | 08    | 2.0   |
|         | shifting second shifting. Method of partial fractions                    | 00    | 20    |
|         | 2.4 Convolution theorem                                                  |       |       |
|         | 3.5 Lanlace transform of derivatives                                     |       |       |
|         | 3.6 Solution of differential equation using Lanlace transform            |       |       |
|         | (up to second order equation)                                            |       |       |
|         | Fourier Series                                                           |       |       |
|         | 4.1 Definition of Fourier series (Fuler's formula)                       |       |       |
|         | 4.2 Series expansion of continuous functions in the intervals            |       |       |
| 04      | $(0, 21) (-1, 1) (0, 2\pi) (-\pi, \pi)$                                  | 06    | 12    |
|         | $(0, 2i), (-i, i), (0, 2\pi), (-\pi, \pi)$                               |       |       |
|         | 4.3 Series expansions of even and odd functions.                         |       |       |
|         | 4.4 Half range series.                                                   |       |       |

|    | Num | erical Methods                                        |     |     |
|----|-----|-------------------------------------------------------|-----|-----|
|    | 4.1 | Solution of algebraic equations                       |     |     |
|    |     | Bisection method.                                     | 04  | 08  |
|    |     | Regularfalsi method.                                  | • • |     |
| 05 |     | Newton – Raphson method.                              |     |     |
|    | 4.2 | Solution of simultaneous equations containing 2 and   |     |     |
|    |     | 3 unknowns                                            |     | 08  |
|    |     | Gauss elimination method.                             | 04  | 00  |
|    |     | Iterative methods- Gauss seidal and Jacobi's methods. |     |     |
|    |     | Total                                                 | 48  | 100 |

# Learning Resources: Books:

| Sr.<br>No. | Title                                                       | Authors             | Publications                            |  |  |
|------------|-------------------------------------------------------------|---------------------|-----------------------------------------|--|--|
| 1          | Mathematics for polytechnic                                 | S. P. Deshpande     | Pune Vidyarthi Griha<br>Prakashan, Pune |  |  |
| 2          | Calculus: single variable                                   | Robert T. Smith     | Tata McGraw Hill                        |  |  |
| 3          | Laplace Transform                                           | Lipschutz           | Schaum outline series.                  |  |  |
| 4          | Fourier series and boundary value problems                  | Brown               | Tata McGraw Hill                        |  |  |
| 5          | Higher Engineering Mathematics                              | B. S. Grewal        | Khanna Publication, New Dehli           |  |  |
| 6          | Introductory Methods of<br>Numerical analysis               | S. S. Sastry        | Prentice Hall Of India, New Dehli       |  |  |
| 7          | Numerical methods for scientific & engineering computations | M. K. Jain & others | Wiley Eastern Publication.              |  |  |

**Course Name : Electrical Engineering Group.** 

**Course Code : EE/EP** 

Semester : Third

Subject Title : Electrical Circuits & Network

Subject Code : 12055

**Teaching and Examination Scheme:** 

| Teaching Scheme |    |    |              |     | Examinati | on Scheme |     |       |
|-----------------|----|----|--------------|-----|-----------|-----------|-----|-------|
| TH              | TU | PR | PAPER<br>HRS | TH  | PR        | OR        | TW  | TOTAL |
| 04              |    | 02 | 03           | 100 | 50#       |           | 25@ | 175   |

### NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by SBTE.
- Curriculum for first test and second test shall be approximately 40% and 60% respectively. Question paper for test: Q1: 3 bits of 3 marks each, option 3/4, Q.2: 3 bits of 4 marks each, option 2/3, Q3: 3 bits of 4 marks each or 2 bits of 8 marks each, option 2/3 or 1/2

> Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

#### **Rationale:**

Electrical Circuits and Network subject is categorized under engineering science group.

Mainly this subject includes the concept and principles of circuits and circuit analysis. Diploma holders have to play the role as supervisor in Electrical Technology areas and also to assist in carrying out the analysis and investigation work.

This subject finds utility in understanding the concepts in other electrical subjects such as Electrical Power System, Electrical Measurement and Instrumentation, & Electrical Machines etc.

**Objectives:** The students will be able to:

- 1. Know and define the basic elements; electric circuit terminology; energy sources used in electric circuit and also AC waveform and its various quantities.
- 2. Interpret the response of R,L,C elements to AC supply
- 3. Calculate various parameters of AC Circuits.
- 4. Interpret performance of AC Series and Parallel Circuits.
- 5. Know relationship between phase & line values of various quantities in three phase circuits.
- 6. Use network theorems for solutions of DC Networks.

# Learning Structure:



# **Contents:** Theory

Note: - All Network Theorems should be taught only for DC supply. Superposition Theorem should be taught for AC supply also. However numerical should not be asked on AC supply.

| Chapter | Name of the Topic                                          | Hours | Marks |
|---------|------------------------------------------------------------|-------|-------|
|         | Review of Basic concepts of electrical Circuit             |       |       |
|         | 1.1 Electric Circuit Elements R,L,C                        |       |       |
|         | 1.2 Energy Sources                                         |       |       |
| 01      | 1.3 A.C. waveform and definition of various terms          | 06    | 10    |
|         | associated with it                                         |       |       |
|         | 1.4 Response of pure R, L, and C to AC supplies.           |       |       |
|         | Vector Representation of alternating quantity.             |       |       |
|         | Single phase AC Circuits                                   |       |       |
|         | 2.1 Series AC circuits R-L, R-C and R-L-C circuits.        |       |       |
|         | Impedance, reactance, phasor diagram, impedance            |       |       |
|         | triangle, power factor, Average power, Apparent            |       |       |
|         | power, Reactive power, Power triangle (Numerical)          |       |       |
|         | 2.2 Series Resonance, quality factor (Numerical)           | 20    | 22    |
| 02      | 2.3 Parallel AC circuits R-L, R-C and R-L-C circuits.      | 20    | 32    |
|         | Admittance, Susceptance, Solution by admittance            |       |       |
|         | method, phasor diagram and complex Algebra method.         |       |       |
|         | (Numerical)                                                |       |       |
|         | 2.4 Parallel resonance, quality factor.                    |       |       |
|         | 2.5 Comparison of series and Parallel circuits.            |       |       |
|         | Poly phase AC Circuits                                     |       |       |
|         | 3.1 Generation of three phase e. m. f.                     |       |       |
|         | 3.2 Phase sequence, polarity marking                       |       |       |
|         | 3.3 Types of three-phase connections.                      |       |       |
|         | 3.4 Concept of unbalanced load and balanced load.          |       |       |
| 03      | 3.5 Line, phase quantities and power in three phase system | 12    | 22    |
|         | with balanced star and Delta connected load & their        |       |       |
|         | interrelationship                                          |       |       |
|         | 3.6 Advantages of polyphase circuits over single phase     |       |       |
|         | circuits                                                   |       |       |
|         | Principles of circuit Analysis (ONLY DC circuits)          |       |       |
|         | 1.1 Mesh analysis.(Numerical)                              |       |       |
| 04      | 1.2 Node analysis with voltage current source (Numericals) | 10    | 16    |
|         | Star/delta & Delta/star transformations.(Simple            |       |       |
|         | Numericals)                                                |       |       |
|         | Network Theorems (Statement, procedure, applications       |       |       |
|         | and areas of applications, Simple Numerical on DC          |       |       |
|         | Circuits)                                                  |       |       |
|         | 5.1 Superposition Theorem (for also AC but no numericals   |       |       |
| 05      | on AC)                                                     | 16    | 20    |
|         | 5.2 Thevenin's Theorem                                     |       |       |
|         | 5.3 Norton's Theorem                                       |       |       |
|         | 5.4 Source conversion / ideal voltage and current source   |       |       |
|         | 5.5 Maximum power transfer Theorem                         |       |       |
|         | Total                                                      | 64    | 100   |

#### **Practical:**

Skills to be developed:

#### **Intellectual Skills:**

- 1. Interpret results
- 2. Calculate values of various components for given circuits
- 3. Select instruments

#### **Motor Skills:**

- 1. Connect the instruments properly.
- 2. Take accurate readings.
- 3. Draw phasor diagrams and graphs.

#### List of Practical:

- To observe A.C. waveform on C.R.O.and calculates average & R.M.S. Values, frequency, and observe the response of 'Resistance' to AC
- 2) To observe response of 'Inductor' and 'Capacitor' to AC
- 3) To determine impedance & Plot the phasor diagram of R-L series circuit.
- 4) To determine the current and P.F. of R.C. series circuit.
- 5) To determine the current and P.F. in R.L.C. series circuit.
- 6) To obtain resonance in R-L-C series circuit.
- 7) To determine the current and P.F. in R.L. Parallel circuit.
- 8) To determine the current and P.F. in R.C. Parallel circuit.
- 9) To determine the current and P.F. in R.L.C. Parallel circuit.
- 10) To obtain resonance in R-L-C parallel circuit.
- 11) To verify the line and phase values for star connected balanced load.
- 12) To verify the line and phase values for delta connected balanced load.
- 13) To verify the Superposition theorem.
- 14) To verify Thevenins theorem and Norton's theorem.
- 15) To verify the maximum power transfer Theorem.

### LIST OF PRACTICE ORIENTED PROJECTS:

- 1) To observe Response of R; L; and C to A.C. supply. Observe the current and voltage wave forms on C. R. O. and determine magnitude and phase angle of voltage and current.
- To obtain Resonance in R-L-C series circuit and study the quality factor and bandwidth. Give applications of series resonance circuit and Draw the curve showing variation of R, XL, XC, I with F.

3) To verify KCL, KVL, Superposition theorem, Thevenin's theorem and maximum power transfer theorem applicable to A.C. circuits.

### Learning Resources: Books:

| Sr.<br>No. | Author         | Title                                                         | Publisher             |
|------------|----------------|---------------------------------------------------------------|-----------------------|
| 1.         | Boylested R.L. | Introductory circuit Analysis.                                | Wheeler, New Delhi    |
| 2.         | Edminister     | Schaum online series Theory and problems of Electric circuits | T. M. G. H. , Newyork |
| 3.         | A. Sudhakar    | Circuit and network                                           | Tata McGraw Hill      |
| 4.         | V.N. Mittle    | Basic Electrical Engineering.                                 | Tata McGraw Hill      |
| 5.         | B. L. Theraja  | Electrical Technology Volume-I                                | S. Chand & Co.        |

| Course name   | : Electrical Engineering Group |
|---------------|--------------------------------|
| Course Code   | : EE/EP                        |
| Semester      | : Third                        |
| Subject Title | : Electrical Measurements      |
| Subject Code  | : 12056                        |
|               |                                |

**Teaching and Examination Scheme:** 

| <b>Teaching Scheme</b> |    |    |              |     | Examinati | on Scheme |     |       |
|------------------------|----|----|--------------|-----|-----------|-----------|-----|-------|
| TH                     | TU | PR | PAPER<br>HRS | TH  | PR        | OR        | TW  | TOTAL |
| 03                     |    | 02 | 03           | 100 | 50#       |           | 25@ | 175   |

NOTE:

- Two tests each of 25 marks to be conducted as per the schedule given by SBTE.
- Curriculum for first test and second test shall be approximately 40% and 60% respectively. Question paper for test: Q1: 3 bits of 3 marks each, option <sup>3</sup>/<sub>4</sub>, Q.2 : 3 bits of 4 marks each, option 2/3, Q3: 3 bits of 4 marks each or 2 bits of 8 marks each, option 2/3 or <sup>1</sup>/<sub>2</sub>.

### Total of test marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

### Rationale:

This subject is classified under core technology. The Diploma holder has to work as Technical supervisor, maintenance engineer, production engineer in industries, electrical power generation, transmission and distribution system, traction installation system, machine operation etc.

For above job responsibilities he has to take the measurements of various electrical quantities power & energy for testing, monitoring, maintenance, and controlling the process. In addition to this he must know the calibration techniques and extension of meter ranges. Therefore Electrical Measurement skills are very important. Accuracy of measurement is one of the main parameters in industrial processes as ability of control depends upon ability to measure.

### **Objectives:**

The Students will be able to:

- 1. Identify the measuring instruments used for measuring electrical quantities.
- 2. Select appropriate measuring instrument with range for measurement of various electrical quantities. select and use range multiplier if required.
- 3. Select appropriate instrument for measurement of power, energy.
- 4. Classify measuring instruments based on construction, principle of operation and quantity to be measured, types of errors.
- 5. Calibrate various types of instruments as per is.

## Learning Structure:



# **Contents: Theory**

| Chapter | Name of the Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hours | Marks |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
|         | Fundamentals of Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |
|         | <ul> <li>1.1 06</li> <li>Purpose of measurement and significance of measurement</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |       |
| 01      | <ul> <li>Various effects of electricity employed in measuring instruments.</li> <li>1.2</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 05    | 12    |
|         | <ul> <li>Desirable qualities of measuring instruments.</li> <li>Classification of Instruments.</li> <li>Classification of errors, their Causes and remedies.</li> <li>Types of torgue in Analog Instruments</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |
|         | Measurement of Current and Voltage         2.1       10         • Construction and principle of PMMC, MI & Dynamometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |       |
| 02      | <ul> <li>type Instruments.</li> <li>Production of torque: methods.</li> <li>2.2</li> <li>Principles of Voltage and Current measurement.</li> <li>Range Extension of Ammeter and Voltmeter</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10    | 22    |
|         | <ul> <li>Different Methods of range extension of Ammeter and<br/>Voltmeter. (Simple numerical)</li> <li>Calibration of Ammeter and Voltmeter.</li> <li>Instrument transformers (CT &amp; PT): Their use in<br/>extension of ranges</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |
|         | Measurement of Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |       |
| 03      | <ul> <li>3.1 10</li> <li>Concept of power in A.C. Circuit</li> <li>Principle and Construction of dynamometer type wattmeter.</li> <li>Errors and their compensation.</li> <li>Polyphase wattmeter: Construction and applications.</li> <li>Multiplying factor of wattmeter.</li> <li>3.2 10</li> <li>Measurements of power in 3 phase circuit for balanced and unbalanced load by one wattmeter method, two wattmeter method.</li> <li>Effect of power factor variation on wattmeter readings in two wattmeter method.</li> <li>Measurement of reactive power in three phase balance load by one wattmeter method and two wattmeter method.</li> <li>Concept of Digital Wattmeter. (Simple numerical on 3.2)</li> </ul> | 10    | 20    |
| 04      | Measurement of Electrical Energy4.1• Concept of electrical energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 07    | 14    |

|    | Constructional feature & principle of working of single phase and three phase induction type energy. |    |     |
|----|------------------------------------------------------------------------------------------------------|----|-----|
|    | meter                                                                                                |    |     |
|    |                                                                                                      |    |     |
|    | Different types of errors and their compensation                                                     |    |     |
|    | <ul> <li>Calibration of energy meter.</li> </ul>                                                     |    |     |
|    | Concept of Electronic energy meter.                                                                  |    |     |
|    | Constructional features and working principles of other                                              |    |     |
|    | Meters                                                                                               |    |     |
|    | 5.1 08                                                                                               |    |     |
|    | • Single phase and three phase Power Factor Meter (Only dynamometer type).                           |    |     |
| 05 | • Frequency meter (Weston and Ferro dynamic type).                                                   | 08 | 16  |
|    | • Sychronoscope.                                                                                     |    |     |
|    | 5.2 08                                                                                               |    |     |
|    | • Phase sequence Indicator.( Rotating type only)                                                     |    |     |
|    | • Clip-on-ammeter.                                                                                   |    |     |
|    | • Q-meter.                                                                                           |    |     |
|    | Measurement of Circuit Parameters                                                                    |    |     |
|    | 6.1 10                                                                                               |    |     |
|    | Classification of Resistance: Low, Medium and High.                                                  |    |     |
|    | • Methods of Measurements of Low, Medium and High                                                    |    |     |
|    | Resistance (Kelvin Double bridge, Wheatstone bridge                                                  |    |     |
| 06 | and Megger)                                                                                          | 08 | 16  |
|    | • Measurement of Earth resistance- Earth tester (Analog &                                            |    |     |
|    | Digital)                                                                                             |    |     |
|    | <b>0.2</b> Construction, working principle and operation of: 00                                      |    |     |
|    | • Digital Multimeter.                                                                                |    |     |
|    | • A.C. DRUges.                                                                                       |    |     |
|    | • L.C.K. Meter.                                                                                      |    | 100 |
|    | Total                                                                                                | 48 | 100 |

# Practical:

Skills to be developed:

### **Intellectual Skills:**

- 1. Identification of instruments
- 2. Selection of instruments and equipment for measurement

### **Motor Skills:**

- 1. Accuracy in measurement
- 2. Making proper connections

### **List of Practicals:**

1. Measurement of Current and Voltages by Low range ammeter and voltmeter respectively with shunt and multiplier.

- 2. Measurement of Current and Voltages by Low range ammeter and voltmeter respectively by Using Current Transformer and potential Transformer.
- 3. Measurement of active and reactive power in three phase balanced load by single wattmeter method.
- 4. Measurement of active and reactive power in three phase balanced load by two wattmeter method and observe the effect of Power Factor variation on Wattmeter reading.
- 5. Calibration of Energy meter at various power factor by standard energy meter.
- 6. Measurement of energy in single phase & three phase balanced load using Electronic Energy Meter.
- 7. Measurement of Low resistance by Kelvin's Double Bridge.
- 8. Measurement of Medium resistance by Wheatstone bridge.
- 9. Measurement of Insulation Resistance by Megger.
- 10. a) Measurement of Resistance, Voltage, Current, Voltage, Current in A.C & D. C. Circuit by using digital multimeter.

b) Measurement of A.C. Current by Clip-on ammeter

- 11. Measurement of Earth Resistance by Earth Tester.
- 12. Measurement of Circuit Parameters by LCR meter.
- 13. Measurement of power factor of single phase and three phase load by PF meter and verifying through I, V and P measurement.
- 14. Observe the phase sequence of three phase circuit Using Rotating type phase sequence Indicator.
- 15. Measurement of Frequency of A.C. Supply Using Weston or Ferro dynamic type Frequency meter.

#### Learning Resources:

#### Books:

| Sr.<br>No. | Author                 | Title                                                 | Publisher              |
|------------|------------------------|-------------------------------------------------------|------------------------|
| 1          | A.K. Sawhney           | Electric & Electronic Measurement and Instrumentation | Dhanpatrai & Sons      |
| 2          | Copper &<br>Heltrick   | Electronic Instrumentation & measurement Techniques   | Prentice Hall of India |
| 3          | Rangan Mani<br>& Sarma | Instrumentation Devices and System                    | Tata McGraw Hill       |
| 4          | Kalsi                  | Electronic Instrumentation                            | Tata McGraw Hill       |
| 5          | S.K.Singh              | Industrial Instrumentation & control                  | Tata McGraw Hill       |
| 6          | Golding                | Electrical Measurement & measuring<br>Instrument      | Wheeler                |
| 7          | N.V.Suryanaryan        | Electrical Measurement & measuring<br>Instrument,     | S. Chand & Co.         |
| 8          | C.T. Baldwin           | Fundamental of Electrical measurement                 |                        |

• IS/International Codes :IS 1248, 1765, 6236, 9223, 8945, 2442

**Course Name : Electrical Engineering Group** 

**Course Code : EE/EP** 

Semester : Third

Subject Title : Electrical Power Generation

Subject Code : 12057

### **Teaching and Examination Scheme:**

| <b>Teaching Scheme</b> |    |    | Exam S        | Scheme & ] | Maximum | Marks |    |       |
|------------------------|----|----|---------------|------------|---------|-------|----|-------|
| TH                     | TU | PR | PAPER<br>HRS. | TH         | PR      | OR    | TW | TOTAL |
| 03                     |    | 00 | 03            | 100        |         |       |    | 100   |

NOTE:

> Two test of 25 marks to be conducted as per the schedule given by SBTE

> Curriculum for first test and second test shall be approximately 40% and 60% respectively.

Question paper for test: Q1: 3 bits of 3 marks each, option  $\frac{3}{4}$ ., Q2 : 3 bits of 4 marks each , option  $\frac{2}{3}$ . Q3: 3 bits of 4 marks or 2 bits of 8 marks eachor 2 bits of 8 marks each, option  $\frac{2}{3}$  or  $\frac{1}{2}$ .

### **Rationale:**

This is a core technology subject. Electrical diploma pass outs should know the principle of generation of electricity, methods of generation of electricity & recent trends in generation of electricity.

This subject will provide the basis for further studies in transmission, distribution and power system operation. Also the subject will provide the knowledge about the recent trends in non-conventional energy sources & their working principles.

**Objectives:** The student will be able to:

- 1) Explain the working of different power plants
- 2) Identify different components for various systems in generating stations
- 3) Select suitable sites for different power stations
- 4) Define the terms used in economics of power generation and explain their relation
- 5) Select alternative energy sources for given conditions
- 6) Explain the working of wind mills and solar systems
- 7) Explain working of domestic & commercial D. G. Set

# Learning Structure:

Applications:



# **Contents: Theory**

| Chapter | Name of the Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hours | Marks |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 01      | <ul> <li>Basics of Power Generation</li> <li>1.1 Importance of electrical power in day today life</li> <li>1.2 Various sources of energy</li> <li>1.3 Overview of method of electrical power generation</li> <li>1.4 Comparison of Sources of power.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                  | 02    | 08    |
| 02      | <ul> <li>Thermal Power Stations</li> <li>2.1 List of thermal power station in state and country with their capacities</li> <li>2.2 Selection of site for thermal power stations.</li> <li>2.3 Main parts, block diagram of thermal power stations.</li> <li>2.4 Quality of fuel and its effect on quality of power generation</li> <li>2.5 Operation of following components:     <ul> <li>Boiler</li> <li>Economizer.</li> <li>Air pre heater</li> <li>Super-heaters &amp; re-heaters.</li> <li>Steam prime movers.</li> <li>Condensers.</li> <li>Spray ponds &amp; cooling towers.</li> </ul> </li> <li>(Block diagrams &amp; description in brief)</li> </ul> | 07    | 12    |
| 03      | <ul> <li>Nuclear Power Stations</li> <li>3.1 Block diagram and working of Neuclear Power Station</li> <li>3.2 Construction and working of Nuclear Reactor</li> <li>3. 3 Fuels used in Nuclear Power Station</li> <li>3. 4 Economics of Nuclear Power Station</li> <li>3. 5 List of Nuclear power stations in state &amp; county with their capacities.</li> </ul>                                                                                                                                                                                                                                                                                                | 05    | 12    |
| 04      | <ul> <li>Hydro Power Stations</li> <li>4.1 List of Hydro Power stations with their capacities &amp; number of units in state &amp; country.</li> <li>4.2 Selection of site and Classification</li> <li>4.3 Layout of hydro Power stations</li> <li>4.4 Types Turbines &amp; generators used</li> <li>4.5 Selection of turbine and alternator according to water head and capacity</li> </ul>                                                                                                                                                                                                                                                                     | 05    | 12    |
| 05      | <ul> <li>Diesel Power Stations</li> <li>5.1 Applications of diesel power stations</li> <li>5.2 Diesel electric plant- Main components (Block Diagram)</li> <li>5.3 Different types of engines &amp; their working.<br/>Operation, maintenance &amp; trouble shooting chart of diesel plant.</li> </ul>                                                                                                                                                                                                                                                                                                                                                           | 05    | 10    |
| 06      | Non-Conventional Energy Sources6.1Types of non-conventional energy sources.6.2Solar Energy<br>Potential of solar energy.<br>Photovoltaic effect – for solar energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09    | 20    |

|    | Working & applications of solar energy.                            |    |     |
|----|--------------------------------------------------------------------|----|-----|
|    | 6.3 Wind Energy.                                                   |    |     |
|    | Selection of site for wind mills                                   |    |     |
|    | Principle of electricity generation with the help of               |    |     |
|    | wind energy                                                        |    |     |
|    | Block diagram and working of wind energy plant                     |    |     |
|    | List of major wind plants in the state with their                  |    |     |
|    | approximate capacities                                             |    |     |
|    | 6.3 Bio-mass & Bio-gas energy.                                     |    |     |
|    | Composition of Bio-gas & its calorific value.                      |    |     |
|    | Traditional; non-traditional Biogas plants                         |    |     |
|    | Bio-mass based power generation plants & their                     |    |     |
|    | capacities.                                                        |    |     |
|    | 6.5 Geo-thermal Energy and its Applications.                       |    |     |
|    | 0.6 Ocean energy.                                                  |    |     |
|    | Energy from tides                                                  |    |     |
|    | Site requirements                                                  |    |     |
|    | Advantages and Limitations of Tidal power generation.              |    |     |
|    | 6.7 Fuel Cells: Construction, working and applications             |    |     |
|    |                                                                    |    |     |
|    | Economics Of Power Generation                                      |    |     |
|    | /.1 Terms commonly used in system operation: connected             |    |     |
|    | reserve                                                            |    |     |
|    | 7.2 Curves used in system operation such as Load-curve, load       |    |     |
|    | duration curve, integrated duration curve. (Simple                 |    |     |
| 07 | numerical based on plotting above curves.)                         | 09 | 14  |
|    | 7.3 Factors affecting the cost of Generation: Average demand,      |    |     |
|    | Maximum demand, plant capacity factor& plant use factor,           |    |     |
|    | Diversity factor load factor.                                      |    |     |
|    | 7.4 Choice of Size & number of Generator Units difficulties        |    |     |
|    | involved in it.                                                    |    |     |
|    | Interconnected Power Systems                                       |    |     |
|    | 8.1 Combined operation of power stations.                          |    |     |
|    | 8.2 Comparison of various types of power stations                  |    |     |
|    | 8.3 Advantages of Interconnection.                                 |    |     |
| 08 | 8.4 Base load & peak loads, load allocation among various types    | 06 | 12  |
|    | 8.5 Economic loading of interconnected stations                    |    |     |
|    | 8.6 Load sharing and transfer of load between power stations.      |    |     |
|    | 8.7 Inter connection of power stations at state and national level |    |     |
|    |                                                                    |    |     |
|    | Total                                                              | 48 | 100 |

### Learning Resources:

### 1. Books:

| Sr.<br>No. | Author                                | Title                               |
|------------|---------------------------------------|-------------------------------------|
| 1          | Dr. S. L. Uppal                       | Electrical Power                    |
| 2          | Soni – Gupta - Bhatnagar              | A course in Electrical Power        |
| 3          | Prof. G. D. Rai                       | Non conventional Energy sources     |
| 4          | Prof. Arrora and Dr. V. M. Domkundwar | A course in Power Plant Engineering |

### 2. Journals:

- 1. Electrical India Journal for recent trends & development in Electrical Engineering
- 2. Transparencies of different power plants must be used & should be placed on the notice board for drawing the diagrams.
- 3. O.H.P. is to be used in the classroom.

Course Name : Electrical & Electronics Engineering Group Course Code : EE/EP/ET/EJ/EN/EX/IE/IS/IC/DE/MU/IU/ED/EI/MR Semester : Third Subject Title : Basic Electronics Subject Code : 12058

**Teaching and Examination Scheme:** 

| Teaching Scheme |    |    | Examination Scheme |     |     |    |     |       |
|-----------------|----|----|--------------------|-----|-----|----|-----|-------|
| TH              | TU | PR | PAPER<br>HRS.      | TH  | PR  | OR | TW  | TOTAL |
| 04              |    | 02 | 03                 | 100 | 50# |    | 25@ | 175   |

NOTE:

### Two tests each of 25 marks to be conducted as per the schedule given by SBTE.

# Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work. (SW)

#### **Rationale:**

Electronics is a major part of our day to day life. In each and every field electronic systems are used. Basic electronics is one of the subject which is the base of all advance electronics. It starts with PN junction which makes the student to follow the functioning of all semiconductor based electronics. This is a core group subject and it develops cognitive and psychomotor skills.

**Objectives:** Student will be able to:

- 1) Describe the formation of PN junction.
- 2) Draw the characteristics of basic components like diode, transistor etc.
- 3) Draw and describe the basic circuits of rectifier, filter, regulator and amplifiers.
- 4) Know voltage amplifiers.
- 5) Test diode and transistors.
- 6) Read the data sheets of diode and transistors.

# Learning Structure



# **Content: Theory**

| Chapter | Name of the Topic                                                | Hours | Marks |
|---------|------------------------------------------------------------------|-------|-------|
|         | Semiconductor diode                                              |       |       |
|         | Rectifying diode                                                 |       |       |
|         | Review of P-type and N-type semiconductor                        |       |       |
|         | Junction of P-type & N-type i.e. PN junction                     |       |       |
|         | Barrier voltage, depletion region, Junction Capacitance          |       |       |
|         | Forward biased & reversed biased junction                        |       |       |
|         | Diode symbol, circuit diagram for characteristics (forward       |       |       |
|         | & reversed )                                                     |       |       |
|         | Characteristics of PN junction diode                             |       |       |
|         | Specifications:-                                                 |       |       |
|         | Forward voltage drop, Reversed saturation current,               |       |       |
|         | maximum forward current, power dissipation                       |       |       |
|         | Package view of diodes of different power ratings (to be         |       |       |
|         | shown during practical hours)                                    |       |       |
|         | Zener diode                                                      |       |       |
|         | construction (reference to doping level)                         |       |       |
|         | Symbol, circuit diagram for characteristics (forward &           |       |       |
|         | reversed)                                                        |       |       |
|         | Avalanche & zener breakdown                                      |       |       |
|         | Specifications:-                                                 |       |       |
|         | Zener voltage, power dissipation, break over current,            |       |       |
|         | dynamic resistance & maximum reverse current                     |       |       |
| 1       | Special diodes                                                   | 12    | 20    |
|         | Point contact diode, Schottky diode                              |       |       |
|         | Optical Diodes                                                   |       |       |
|         | LED, IRLED, photo diode, and laser diode. Symbol,                |       |       |
|         | operating principle & applications of each.                      |       |       |
|         | PASSIVE COMPONENTS                                               |       |       |
|         | Resistor: definition, symbol, unit.                              |       |       |
|         | Types of resistors : fixed, variable, LDR,                       |       |       |
|         | I hermistor (symbol and list of application only)                |       |       |
|         | Resistor colour code, wattage (w.r to size)                      |       |       |
|         | 2) Capacitor : definition, symbol, unit                          |       |       |
|         | Types of capacitor to be shown in practical, no theory)          |       |       |
|         | Fixed : mica, paper, ceramic, electrolytic                       |       |       |
|         | variable : Gang capacitor                                        |       |       |
|         | 5) Inductor : definition, symbol, unit                           |       |       |
|         | Types of inductors : fixed, variable                             |       |       |
|         | ransformer (symbol, types ( step up and step down),              |       |       |
|         | appination.<br>NOTE: The above tenic(DASSIVE COMPONENTS):: 4- 5- |       |       |
|         | averad in practical for Electrical anginating students           |       |       |
|         | only No questions will be set on this tonic in theory            |       |       |
|         | examination                                                      |       |       |
|         | CAUTIMIT (COT)                                                   |       |       |

| 2 | Rectifiers & FiltersNeed of rectifier , definitionTypes of rectifier – Half wave rectifier, Full wave rectifier,(Bridge & centre tapped )Circuit operationInput/output waveforms for voltage & currentAverage (dc) value of current & voltage ( no derivation)Ripple, ripple factor, ripple frequency, PIV of diode used,transformer utilization factor, efficiency of rectifier.Comparison of three types of rectifierNeed of filtersTypes of filtersA] shunt capacitor B] Series inductor C] LC filterD] $\pi$ filterCircuit operation, dc output voltage , ripple factor(formula), ripple frequency, Dependence of ripple factor onload .Input/output waveforms , limitations & advantages                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 | 14 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----|
| 3 | TransistorsIntroduction , Basic conceptTypes of transistors , structure & symbolsTransistor operationConventional current flow , relation between differentcurrents in transistorTransistor amplifying actionTransistor configurations:- CB , CE & CCCircuit diagram to find the characteristicsInput/output characteristicsTransistor parameters- input resistance, output resistance, $\alpha$ , $\beta$ & relation between them.Comparison between three configurationsTransistor specifications:-V <sub>CE</sub> Sat , I <sub>C</sub> Max , V <sub>CEO</sub> , I <sub>CEO</sub> $\alpha$ , $\beta$ V <sub>CE Breakdown</sub> , Powerdissipation ( to be explained during practical using datasheets)Testing of transistor using multimeter (To be shown duringpractical)Construction, working principle, characteristics of PhototransistorIntroduction to opto-coupler1] Bipolar junction transistor(BJT)2] Unipolar transistor (JFET)Construction, working principle & characteristics.3] Unijunction Transistor(UJT)Construction, working principle & characteristicsBiasing of BJTIntroduction , need of biasing , concept of dc load line ,selection of operating point (Q point), Need of stabilizationof Q Point (Thermal run away concept) | 12 | 22 |

|   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 64 | 100 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| 6 | <ul> <li>Concept of amplification</li> <li>Small signal amplifier using BJT</li> <li>Graphical analysis</li> <li>Determination of current , voltage &amp; power gain ,</li> <li>Input &amp; output resistance , phase shift between input &amp; output.</li> <li>AC Load Line</li> <li>Function of input &amp; output coupling capacitors &amp; criteria for the value selection.</li> <li>Function of emitter bypass capacitor &amp; its value selection.</li> <li>AC equivalent circuit of transistor CE amplifier.</li> <li>Single stage CE amplifier with voltage divider bias.</li> <li>Its explanation.</li> <li>Frequency response of single stage CE Amplifier, Bell,</li> <li>Decibel unit. Bandwidth &amp; its significance. Effect of coupling &amp; emitter bypass capacitor on bandwidth.</li> <li>Introduction to CB &amp; CC amplifier &amp; List of applications.</li> <li>Cascade Amplifiers (Multistage Amplifier)</li> <li>Need of Multistage Amplifiers, Gain of amplifier.</li> <li>Types of amplifier circuit diagram , working, frequency Response, merits &amp; demerits &amp; applications of each.</li> </ul> | 12 | 20  |
| 5 | Regulated power supplyWhat is regulator?Need of regulators , voltage regulation factorConcept of load regulation & line regulationBasic Zener diode voltage regulatorLinear RegulatorsBasic block diagram of dc power supplyTransistorised series & shunt regulator – circuit diagram& operation.Regulator IC's – 78xx, 79xx, 723 as fixed, variable & dualregulator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 08 | 12  |
| 4 | Types of biasing circuits<br>A] Fixed biased circuit<br>B] Base biased with emitter feed back<br>C] Base biased with collector feed back<br>D] Voltage divider<br>E] Emitter biased<br>Circuit operation of each circuit.<br>Introduction to two port n/w<br>Hybrid model for CE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 | 12  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |     |

### Practical:

Skills to be developed: Intellectual Skills:

- 1. Identification and selection of components.
- 2. Interpretation of circuits.
- 3. Understand working of Regulated dc power supply.

### Motor skills:

- 1. Ability to draw the circuits.
- 2. Ability to measure various parameters.
- 3. Ability to test the components using multimeter.
- 4. Follow standard test procedures.

### List of Practical:

- 1] Forward & Reverse characteristics of diode
- 2] Forward & Reverse characteristics of Zener diode
- 3] Study of Rectifiers a] Half wave b] Full wave
- 4] Study of filter circuits. a] Capacitor Filter b] Inductor filter.
- 5] Input & output characteristics of transistor in CE mode
- 6] Input & output characteristics of transistor in CB mode
- 7] Characteristics of FET
- 9] Characteristics of UJT
- 10] Zener Diode Regulator
- 11] Transistor series and shunt regulator
- 11] Single stage common emitter amplifier
- 12] Two stage RC coupled amplifier [Frequency response]
- 13] Study of various Passive components.( To be conducted for only Electrical Engineering Students.)

### **Learning Resources:**

### **Books:**

| Sr.<br>No. | Author                                                                | Title                                  | Publisher              |
|------------|-----------------------------------------------------------------------|----------------------------------------|------------------------|
| 01         | N.N.Bhargava, D.C.<br>Kulashreshtha, S.C. Gupta<br>- TTTI Chandigharh | Basic Electronics &<br>Linear Circuits | Tata McGraw Hill       |
| 02         | Alberrt Malvino<br>David J.Bates                                      | Electronic Principles                  | Tata McGraw Hill       |
| 03         | Allen. Mottershead                                                    | Electronic Devices &<br>Components'    | Prentice Hall of India |
| 04         | NIIT                                                                  | Basic Electronics<br>&Devices          | Prentice Hall of India |
| 05         | Grob Bernard                                                          | Basic Electronics                      | Tata McGraw Hill       |
| 06         | David J. Bell                                                         | Electronics Devices &<br>Circuits      | Prentice Hall of India |

| Course Name   | : Electrical Engineering Group |
|---------------|--------------------------------|
| Course Code   | : EE/EP                        |
| Semester      | : Third                        |
| Subject Title | : Electrical Workshop          |
| Subject Code  | : 12059                        |

### **Teaching and Examination Scheme:**

| Teaching Scheme |    | <b>Examination Scheme</b> |              |    |    |    |     |       |
|-----------------|----|---------------------------|--------------|----|----|----|-----|-------|
| TH              | TU | PR                        | PAPER<br>HRS | TH | PR | OR | TW  | TOTAL |
|                 |    | 04                        |              |    |    |    | 50@ | 50    |

### **Rationale:**

A technician should also have the practical skills regarding wiring, in order to provide him/her the various ways, techniques of fault finding while working on the shop floor. These skills will be developed when he/she actually performs the work.

### **Objectives:**

Students will be able to:

- Identify various electrical accessories.
- Draw & understand the wiring diagrams.
- Prepare schedule of material.
- Use methods of wiring.

# Learning Structure:



# **Contents: Practical:**

Note: All the experiments will be performed by using casing capping or conduit wiring, prepare schedule of material for each wiring work.

| 1. | 1. Identify, dismantle, sketch & assemble different             |           |  |  |  |  |  |
|----|-----------------------------------------------------------------|-----------|--|--|--|--|--|
|    | electrical accessories                                          | 10 Hrs.   |  |  |  |  |  |
| 2. | Wire up one lamp controlled by one SPT switch                   | 06 Hrs.   |  |  |  |  |  |
| 3. | Wire up two lamps controlled by two independent SPT switches    | 06 Hrs.   |  |  |  |  |  |
| 4. | Wire up a call bell/ buzzer                                     | 06 Hrs.   |  |  |  |  |  |
| 5. | Wire up four power sockets controlled independently             | 06 Hrs.   |  |  |  |  |  |
| 6. | Wire up a test board                                            | 06 Hrs.   |  |  |  |  |  |
| 7. | Wire lighting circuit for a go down wiring                      | 08 Hrs.   |  |  |  |  |  |
| 8. | Prepare & mount the energy meter board                          | 08 Hrs.   |  |  |  |  |  |
| 9. | Wire up consumer's main board with ICDP & distribution fuse box | & 08 Hrs. |  |  |  |  |  |

With LCB / MCB

| Course Name   | : Electrical Engineering Group               |
|---------------|----------------------------------------------|
| Course Code   | : EE/EP                                      |
| Semester      | : Third                                      |
| Subject Title | : Elements of Mechanical & Civil Engineering |
| Subject Code  | : 12060                                      |

**Teaching and Examination Scheme:** 

| Teaching Scheme |    | Exam Scheme & Maximum Marks |               |    |    |    |     |       |
|-----------------|----|-----------------------------|---------------|----|----|----|-----|-------|
| TH              | TU | PR                          | PAPER<br>HRS. | TH | PR | OR | TW  | TOTAL |
| 01              |    | 02                          |               |    |    |    | 25@ | 25    |

#### **Rationale:**

Diploma in Electrical Engineering passouts, work as Maintenance Engineers in industry. They have to look after maintenance of Mechanical Machines also. Similarly they have to install electrical machinery. For completing these tasks they need knowledge of Mechanical Machinery related to maintenance and Civil Engineering related to foundation work.

### **Objectives:**

Student will be able to:

- Supervise routine maintenance of Machinery such as Boilers, Turbines, Pumps, Steam Turbines
- 2. Supervise foundation work for installation of machinery and equipment
- 3. Identify faults, mal functioning of machines and equipment
- 4. Decide the size and type of foundation for machines

# Learning Structure:



## **Contents: Theory**

| Chapter | Name of the Topic                                               | Hours |  |  |  |
|---------|-----------------------------------------------------------------|-------|--|--|--|
|         | Boilers, Steam Turbines, Steam Engines:                         |       |  |  |  |
|         | 1.1 Construction & working of Cochran & Babcock & Wilcox        |       |  |  |  |
|         | Boilers.                                                        |       |  |  |  |
| 01      | 1.2 Construction & working of impulse & reaction turbines.      | 04    |  |  |  |
|         | 1.3 Construction & working of steam engine                      |       |  |  |  |
|         | 1.4 Reasons for Malfunctioning, and remedial measures for       |       |  |  |  |
|         | boilers and steam turbines                                      |       |  |  |  |
|         | I.C. Engines:                                                   |       |  |  |  |
|         | 2.1 Construction & working of two stroke & four stroke petrol & |       |  |  |  |
| 02      | diesel engines                                                  | 04    |  |  |  |
|         | 2.2 Reasons for Malfunctioning, and remedial measures for I. C. |       |  |  |  |
|         | Engines                                                         |       |  |  |  |
|         | Air Compressors:                                                |       |  |  |  |
|         | 3.1 Uses of compressed air.                                     |       |  |  |  |
|         | 3.2 Construction & working of single stage & two stage          |       |  |  |  |
| 03      | reciprocating compressor.                                       | 03    |  |  |  |
|         | 3.3 Screw compressor & centrifugal                              |       |  |  |  |
|         | compressor- construction, working & applications.               |       |  |  |  |
|         | 3.4 Reasons for Malfunctioning and remedial measures            |       |  |  |  |
|         | Pumps:                                                          |       |  |  |  |
| 04      | 4,1 Types of Pumps and their working                            | 03    |  |  |  |
|         | 4.2 Reasons for malfunctioning and remedial measures            |       |  |  |  |
|         | Foundation for Machines:                                        |       |  |  |  |
| 05      | 5.1 Need for foundation                                         |       |  |  |  |
|         | 5.2 Material required for foundation                            | 02    |  |  |  |
|         | 5.3 Foundation Bolts: Types and Sizes                           |       |  |  |  |
|         | 5.4 Criteria for Design of foundation                           |       |  |  |  |
|         | Total                                                           | 16    |  |  |  |

### Practicals:

Skills to be developed:

### **Intellectual Skills:**

- Know working of boilers, steam turbine, I.C. Engines, compressors and pumps
- Diagnose faults/malfunctioning
- Select proper tools and equipment for repairs

### **Motor Skills:**

- Dissembling and assembling of machines
- Start and run various machines

### **List of Practical:**

- 1. Trace the flue gas path and water steam circuit with help of boiler model.
- 2. Identify the possible location of fault/malfunctioning and decide how to repair them
- 3. Dismantling & assembly of Petrol/Diesel Engine.
- 4. Trial on single / multi cylinder petrol/ diesel engine.

- 5. Observe operation of Air Compressor and identify locations of fault and decide how to repair
- 6. Observe operation of a Centrifugal Pump and locations of fault and decide how to repair
- 7. Visit a thermal power station and observe functioning of Steam Turbine
- 8. Using Maintenance manuals prepare a maintenance schedule for a centrifugal Pump or Compressor

### Learning Resources: Books:

| Sr.<br>No. | Author              | Title                                 | Publication                     |  |
|------------|---------------------|---------------------------------------|---------------------------------|--|
| 01         | P.L. Ballaney       | A Course in Thermal<br>Engineering    | Khanna Publishers               |  |
| 02         | R. S. Khurmi        | A test book of Thermal<br>Engineering | S. Chand & Co. Ltd.             |  |
| 03         | R. K. Rajput        | Thermal Engineering                   | Laxmi Publication, New<br>Delhi |  |
| 04         | Patel, Karmchandani | Heat Engine Vol. I & II               | Achrya publication              |  |
| 05         | P.K. Nag            | Engineering<br>Thermodynamics         | Tata McGraw Hill                |  |

Course Name : Electrical Engineering Group Course Code : EE/EP Semester : Third Subject Title : Professional Practices - III Subject Code : 12061

**Teaching and Examination Scheme:** 

| Teaching Scheme |    |    |              | Examinati | on Scheme |    |     |       |
|-----------------|----|----|--------------|-----------|-----------|----|-----|-------|
| TH              | TU | PR | PAPER<br>HRS | TH        | PR        | OR | TW  | TOTAL |
|                 |    | 05 |              |           |           |    | 50@ | 50    |

### **Rational:**

Most of the diploma holders join industries. Due to globalization and competition in the industrial and service sectors the selection for the job is based on campus interviews or competitive tests.

While selecting candidates a normal practice adopted is to see general confidence, ability to communicate and attitude, in addition to basic technological concepts.

The purpose of introducing professional practices is to provide opportunity to students to undergo activities which will enable them to develop confidence. Industrial visits, expert lectures, seminars on technical topics and group discussion are planned in a semester so that there will be increased participation of students in learning process.

### **Objectives:**

The student will be able to:

- 1. Acquire information from different sources
- 2. Prepare notes for given topic
- 3. Present given topic in a seminar
- 4. Interact with peers to share thoughts
- 5. Prepare a report on industrial visit, expert lecture

# Learning Structure:



| Activity | Name of the Activity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |  |  |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| 01       | <ul> <li>Field Visits</li> <li>Structured field visits (minimum three) be arranged and report of the same should be submitted by the student, as part of the term work.</li> <li>The field visits may be arranged in the following areas / industries : <ul> <li>i) Visit to Electric Power Generation Station</li> <li>ii) Visit to Wind Mill and/or Hybrid Power Station of Wind and Solar</li> <li>iii) Multi Storied Building for Power Distribution Scheme</li> <li>iv) Visit to a Multi Plex</li> <li>v) Visit to a Captive Power Plant (Themal)</li> </ul> </li> </ul>                                                                                                                                  |    |  |  |  |
| 02       | <ul> <li>Lectures by Professional / Industrial Expert to be organized from of the following areas (any four) <ol> <li>Modern Techniques in Power Generation</li> <li>Role of Power Factor Improvement a tool in reducing cost of generation</li> <li>New trends for built environment</li> <li>New trends for drafting</li> <li>Software for drafting</li> <li>Vi) Digital Metering</li> <li>Vi) Various government schemes such as EGS,</li> <li>Industrial hygiene.</li> <li>Hydro power generation</li> <li>Special purpose wiring in chemical/hazardous industries</li> </ol> </li> </ul>                                                                                                                  | 18 |  |  |  |
| 03       | <ul> <li>Seminar :<br/>Any one seminar on the topics suggested below:<br/>Students (Group of 4 to 5 students) has to search /collect information<br/>about the topic through literature survey, visits and discussions with<br/>experts/concerned persons:<br/>Students will have to submit a report of about 10 pages and deliver a<br/>seminar for 10 minutes.</li> <li>1. Water supply schemes/Problems of drinking water in rural area</li> <li>2. Role of Traffic Signals in smooth flow of vehicles</li> <li>3. Gram Swaraj Yojana</li> <li>4. Schemes of power of generation in coming five years</li> <li>5. Impact of load shading on rural population</li> <li>6 Any other suitable topic</li> </ul> | 20 |  |  |  |
| 04       | Market Survey:         A group of four students is expected to collect information from the market regarding specifications and cost of any four items, used in Electrical wiring for domestic, commercial and industrial use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |  |  |  |
|          | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 80 |  |  |  |