Semester-III **Branch-Electrical Engineering & EEE** Paper- Electronics Engineering Subject Code: ELE306 **Total Hours: 42** Full Marks-100 (80+20) | Chapter | Topics | Hours | |---------|--|-------| | 01. | Semiconductor Diode: 1.1 Semiconductor Theory | | | | • Review of Semiconductor theory (No Question to be set in theory paper) | | | | Intrinsic semiconductor, Extrinsic semiconductor, doping, dopant | 04 | | | trivalent & pentavalent impurities, P-Type and N-Type
Semiconductor. | | | | 1.2 Semiconductor Diode • PN Junction | | | | • Junction theory: Barrier voltage, Depletion region,
Junction capacitance, Forward and reverse biased
junction. | | | | V-I characteristics of P-N Junction diode. Circuit diagram for characteristics (Forward & Reverse) | | | | 1.3 Specification of diode | | | | Forward Voltage Drop, Reverse Saturation Current,
Maximum Forward Current, Power Dissipation. Ideal Diode Model. | | | | 1.4 Zener Diode | | | | Construction & SymbolCircuit diagram for characteristics (Forward & | | | | Reverse) • Specification of zener diode: zener voltage (VZ), | | | | Maximum Power dissipation (PD max), Break over | | | | current, zener resistance. Special Purpose diodes: Schott key diode, Point-contact diode, Varacter Diode (Construction, Symbol, | | | | Characteristics and application). • Optical diodes: LED, IRLED, Photodiode and Lased | | | | diode (Symbol, Operating Principle and application of each) | | | 02 | Rectifiers and Filters 2.1 Rectifiers | | | | Need of rectifier | | | 03 | Types of rectifier: Half wave rectifier, Full wave rectifier (Bridge and centre tapped). working with waveform (IP/OP) waveforms for voltage and current, Average (DC) value of current and voltage (No derivation). Ripple, ripple factor, ripple frequency, PIV of diode used, transformer utilization factor, efficiency of rectifier. Comparison of three types of rectifiers (HWR, FWR (Bridge & Centre Tapped)). 2.2 Filters Need of Filters Types of Filters: Shunt capacitor, series inductor, LC filter, π filter (circuit diagram, operation, DC O/P voltage, ripple factor (Formula), ripple frequency, dependence of ripple factor on load. I/P and O/P waveforms, Limitations and Advantages of all types of filters. Bipolar Junction Transistor Transistor Transistor definition Types: NPN, PNP Junction transistors (Symbols, operating principle) Transistor configuration: Common emitter (CE), Common Collector (CC), Common base (CB). Characteristics in CE configuration (Circuit diagram, I/P and O/P characteristics, different points of characteristics (Cut-off, Active and Saturation), input resistance, Output resistance, current gain (a and β) Transistor Biasing). Need of biasing, DC load line, Operating Point. Types of Biasing Circuits: Fixed bias circuit, Base biased with emitter feedback, Base biased with collector feedback, voltage divider bias, emitter biased. Transistor Model of h-parameters. 3.2 Transistor as an amplifier (CE configuration only) Graphical representation, Current gain, Voltage gain, Power gain (No derivation), Input Output resistance, Phase Shift between input and output. | 12 | |----|--|----| | | Transistor Model of h-parameters. 3.2 Transistor as an amplifier (CE configuration only) Graphical representation, Current gain, Voltage gain,
Power gain (No derivation), Input Output resistance, | | | | Application of each amplifier | | |----|---|----| | | Transistor as a switch-(Circuit diagram, Operation, | | | | Application). | | | | UJT | | | | Symbol, characteristics and working principle of UJT. | | | 04 | Field Effect Transistor (Unipolar Transistor) | | | 04 | | | | | 4.1 FET | | | | Types, Symbols and working principle. | | | | Characteristics of FET, Circuit diagram for drain | 08 | | | characteristics, Operating regions of characteristics. | 00 | | | Drain resistance, Mutual capacitance, amplification | | | | factor and their relation, Pinch off voltage of FET. | | | | Comparison of BJT and FET. (Type of carriers, | | | | switching speed, Thermal stability, space in case of IC | | | | fabrication, control parameter, input impedance, offset | | | | voltage, power gain at audio frequencies) | | | | 4.2 MOSFET | | | | Types, Symbol, working principle. | | | | Application of FET and MOSFET. | | | 05 | Regulated Power Supply | | | | 5.1 | | | | Definition of regulator, Need of regulator, Voltage | | | | regulation factor | | | | Concept of load regulation and line regulation. | | | | Zener diode as a voltage regulator. | 04 | | | Basic block diagram of DC Power supply | | | | Transistorized Series voltage regulator, Transistorized | | | | Shunt Voltage regulator, (Circuit diagram and | | | | operation). | | | | 5.2 Regulator IC's | | | | • IC's 78XX, 79XX (Functional Pin diagram) | | | | • IC 723 as fixed, variable and Dual regulator. | | | 06 | OP Amp | | | | Block diagram, Basic definition of Terms | | | | Equivalent Circuit | 08 | | | Open Loop & closed Loop, OP Amp | | | | Inverting & Non inverting OP Amp | | | | Adder and Subtractor | | | | Integrator, differentiator & Comparator circuit using | | | | OP Amp. | | | | Total | 42 | ## **Reference Books:** | 01 | Principles of Electronics by Malvino | |----|--| | 02 | Electronics device & circuits by Neselski & Boylsted | | 03 | Electronics device & circuits by Grove | | 04 | Electronics device & circuits by by Milliman & Holkias | | 05 | Electronics device & circuits by V.K. Mehta | | 06 | Op Amp by Gaikwad | Subject : Electronics Lab Subject Code :-ELE309 Practical:- ## Skills to be developed Intellectual Skills: - 1. Identification & selection of Components - 2. Interpretation of Circuits - 3. Understand working of rectifier, filter, amplifier and Oscillator circuits ## **Motor Skills:** - 1. Ability to drow the circuits - 2. Ability to measure various parameters - 3. Ability to test the components using Multimeter - 4. Ability to read data sheets of components - 5. Follow standard test procedures ## **List of Practicals** - 1. Forward & Reverse characteristics of diode - 2. Characteristics of Zener diode - 3. Study of Rectifiers (Half wave & Full wave) & Filters (Capacitor & Inductor filter) - 4. Input & Output Characteristics of transistor in CE mode - 5. Characteristics of FET - 6. Characteristics of UJT - 7. Load & Line regulation Characteristics of Regulator - 8. Frequency response of single stage RC coupled amplifier. - 9. To Study the V-I Characteristics of PN Junction diode. - 10. Determination of h parameter.